Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering ETDs

Radiation Damage

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Radiation Effects In Metal Oxides And Carbides, Benjamin Jackson Cowen Sep 2018

Radiation Effects In Metal Oxides And Carbides, Benjamin Jackson Cowen

Nuclear Engineering ETDs

MD simulations of SiO2, TiO2, Cr2O3, Al2O3, MgO, and SiC, are performed to: (a) calculate TDE probability distributions and dependence on crystallographic direction, and (b) determine the number and types of defects formed with low- and high-energy PKAs and projectiles. In addition, a qualitative comparison of the MD simulation results of radiation damage in TiO2, MgO, and crystalline and amorphous SiC thin films are compared with those of in situ TEM ion beam irradiation experiments at the Sandia National Laboratories’ I3TEM facility.

The TDE …


High Precision Refractive Index Measurement Techniques Applied To The Analysis Of Neutron Damage And Effects In Caf2 Crystals, Joseph P. Morris Ph.D. Jul 2017

High Precision Refractive Index Measurement Techniques Applied To The Analysis Of Neutron Damage And Effects In Caf2 Crystals, Joseph P. Morris Ph.D.

Nuclear Engineering ETDs

Neutron irradiation damages material by atomic displacements. The majority of these damage regions are microscopic and difficult to study, though they can cause a change in density and thus a change in refractive index in transparent materials. This work utilized CaF2 crystals to track refractive index change based on neutron radiation dose. High precision refractive index measurements were performed utilizing a nested-cavity mode-locked laser where the CaF2 crystal acted as a Fabry-Pérot Etalon (FPE). By comparing the repetition rate of the cavity and the repetition rate of the FPE, refractive index change was determined. Following several irradiation experiments, …