Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Technical And Economic Viability Of Distributed Recycling Of Low-Density Polyethylene Water Sachets Into Waste Composite Pavement Blocks, Celestin Tsala-Mbala, Koami Soulemane Hayibo, Theresa K. Meyer, Nadine Couao-Zotti, Paul Cairns, Joshua M. Pearce Oct 2022

Technical And Economic Viability Of Distributed Recycling Of Low-Density Polyethylene Water Sachets Into Waste Composite Pavement Blocks, Celestin Tsala-Mbala, Koami Soulemane Hayibo, Theresa K. Meyer, Nadine Couao-Zotti, Paul Cairns, Joshua M. Pearce

Michigan Tech Publications

In many developing countries, plastic waste management is left to citizens. This usually results in landfilling or hazardous open-air burning, leading to emissions that are harmful to human health and the environment. An easy, profitable, and clean method of processing and transforming the waste into value is required. In this context, this study provides an open-source methodology to transform low-density polyethylene drinking water sachets, into pavement blocks by using a streamlined do-it-yourself approach that requires only modest capital. Two different materials, sand, and ashes are evaluated as additives in plastic composites and the mechanical strength of the resulting blocks are …


Towards Distributed Recycling With Additive Manufacturing Of Pet Flake Feedstocks, Helen A. Little, Nagendra Gautam Tanikella, Matthew J. Reich, Matthew J. Fiedler, Samantha L. Snabes, Joshua M. Pearce Sep 2020

Towards Distributed Recycling With Additive Manufacturing Of Pet Flake Feedstocks, Helen A. Little, Nagendra Gautam Tanikella, Matthew J. Reich, Matthew J. Fiedler, Samantha L. Snabes, Joshua M. Pearce

Michigan Tech Publications

This study explores the potential to reach a circular economy for post-consumer Recycled Polyethylene Terephthalate (rPET) packaging and bottles by using it as a Distributed Recycling for Additive Manufacturing (DRAM) feedstock. Specifically, for the first time, rPET water bottle flake is processed using only an open source toolchain with Fused Particle Fabrication (FPF) or Fused Granular Fabrication (FGF) processing rather than first converting it to filament. In this study, first the impact of granulation, sifting, and heating (and their sequential combination) is quantified on the shape and size distribution of the rPET flakes. Then 3D printing tests were performed on …


Open Source Waste Plastic Granulator, Arvind Ravindran, Sean Scsavnicki, Walker Nelson, Peter Gorecki, Jacob Franz, Shane Oberloier, Theresa K. Meyer, Andrew Barnard, Joshua M. Pearce Oct 2019

Open Source Waste Plastic Granulator, Arvind Ravindran, Sean Scsavnicki, Walker Nelson, Peter Gorecki, Jacob Franz, Shane Oberloier, Theresa K. Meyer, Andrew Barnard, Joshua M. Pearce

Michigan Tech Publications

In order to accelerate deployment of distributed recycling by providing low-cost feed stocks of granulated post-consumer waste plastic, this study analyzes an open source waste plastic granulator system. It is designed, built, and tested for its ability to convert post-consumer waste, 3D printed products and waste into polymer feedstock for recyclebots of fused particle/granule printers. The technical specifications of the device are quantified in terms of power consumption (380 to 404 W for PET and PLA, respectively) and particle size distribution. The open source device can be fabricated for less than $2000 USD in materials. The experimentally measured power use …


Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce May 2019

Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) polymers using polycarbonate (PC). Recycled PC regrind of approximately 25 mm2 was 3D printed with an open-source Gigabot X and analyzed. A temperature and nozzle velocity matrix was used to find useful printing parameters, and a print test was used to maximize the output for a two-temperature stage extruder for PC. ASTM type 4 tensile test geometries as well as ASTM-approved …