Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2017

Nanoscience and Nanotechnology

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 229

Full-Text Articles in Engineering

Preparation Of Nis2 Nanosheet And Its Application In Asymmetric Supercapacitor, Yuan-You Wang, Ya-Nan Liu, Dang-Qin Jin Dec 2017

Preparation Of Nis2 Nanosheet And Its Application In Asymmetric Supercapacitor, Yuan-You Wang, Ya-Nan Liu, Dang-Qin Jin

Journal of Electrochemistry

In this work, the NiS2 nanosheets have been synthesized using Ni(OH)2 as a precursor through a sacrificial template method. The microstructure and chemical composition of as-prepared NiS2 were characterized by XRD, EDS, BET, SEM and TEM techniques. The results showed that both Ni(OH)2 and NiS2 were composed of nanoplates. The electrochemical tests revealed that NiS2 exhibited the high specific capacitance of 1067.3 F•g-1 at a current density of 1 A•g-1 and excellent rate performance. Furthermore, in order to evaluate the practical application of NiS2, an asymmetric supercapacitor, NiS2 as …


Core-Shell Pd@Pt Ultrathin Nanowires As Durable Oxygen Reduction Electrocatalysts, Xin Wang, Yun-Jie Xiong, Liang-Liang Zou, Qing-Hong Huang, Zhi-Qing Zou, Hui Yang Dec 2017

Core-Shell Pd@Pt Ultrathin Nanowires As Durable Oxygen Reduction Electrocatalysts, Xin Wang, Yun-Jie Xiong, Liang-Liang Zou, Qing-Hong Huang, Zhi-Qing Zou, Hui Yang

Journal of Electrochemistry

This paper describes a simple CO-assisted reduction approach for the controllable synthesis of ultrathin Pd nanowires along the one-dimensional (1D) direction. Ultrathin Pt films from one to several atomic layers were successfully decorated onto ultrathin Pd nanowires by utilizing Cu UPD deposition, and followed by in-situ redox replacement reaction of UPD Cu by Pt. The core–shell structure and composition of the Pd@Pt ultrathin nanowires have been verified using transmission electron microscopy and energy dispersive X-ray spectrometry. The core–shell Pd@Pt ultrathin nanowires exhibited comparative electrocatalytic activity and improved durability for the oxygen reduction reaction in comparison with commercial Pt black. The …


Three-Dimensional Nanomaterials For Supercapacitor Applications: From Metal Oxides To Metal Phosphides, Zhi Zheng Dec 2017

Three-Dimensional Nanomaterials For Supercapacitor Applications: From Metal Oxides To Metal Phosphides, Zhi Zheng

University of New Orleans Theses and Dissertations

Over the past few years, energy storage devices have received tremendous interest due to the increasing demand for sustainable and renewable energy in modern society. Supercapacitors are considered as one of the most promising energy storage devices because of their high power density and long cycle life. However, low energy density remains as the main shortcoming for supercapacitors. The overall performance of supercapacitors is predominantly determined by the characteristics of the electrodes. Specifically, constructing nanostructured electrode material has been proven as an efficient way to improve the performance by providing large surface area and short ionic and electronic diffusion paths. …


Femtosecond Laser Micromachining Of Low-Temperature Co-Fired Ceramic And Glass Fiber Reinforced Polymer Printed Circuit Boards Materials, Raif Farkouh Dec 2017

Femtosecond Laser Micromachining Of Low-Temperature Co-Fired Ceramic And Glass Fiber Reinforced Polymer Printed Circuit Boards Materials, Raif Farkouh

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Low-temperature co-fired ceramic (LTCC), and glass fiber reinforced polymer (GFRP) printed circuit boards (PCBs) are two materials used for the packaging of electronics. The excellent mechanical and electrical properties of LTCC, combined with the ability to embed passive components offer superior radio frequency (RF) performance and device miniaturization for high-frequency applications. Due to its unique properties, LTCC provides superior performance in applications as diverse as military radar, imaging systems, advanced automotive sensing, telecommunications, and satellites. The use of LTCC in these applications has created a demand for the micromachining of holes, channels, and cavities with specific geometries and structures. Likewise, …


Functional Bio-Nano Hybrids Through A Precise Control Of Interfacial Interactions At The Nanoscale, Sirimuvva Tadepalli Dec 2017

Functional Bio-Nano Hybrids Through A Precise Control Of Interfacial Interactions At The Nanoscale, Sirimuvva Tadepalli

McKelvey School of Engineering Theses & Dissertations

During the course of evolution, proteins have evolved to perform exquisite functions including structural support, signal transduction, actuation, sensing, catalysis, trafficking, gating, light-harvesting, charge transfer, molecular recognition, self-assembly, self-organization, or combinations of two or more of these functions. A precise control and manipulation of the structure and function of proteins is conceivable with the advent of nanotechnology, which has facilitated the integration of nanomaterials with functional biomolecules to realize bio-nano hybrids with synergistically enhanced functionalities.

At the genesis of bionanotechnology, a paucity in the fundamental understanding of the bio-nano interfaces is a grave impediment to the progress of the field. …


The Processing And Polarization Reversal Dynamics Of Thin Film Poly(Vinylidene) Fluoride, Noel Mayur Dawson Dec 2017

The Processing And Polarization Reversal Dynamics Of Thin Film Poly(Vinylidene) Fluoride, Noel Mayur Dawson

Nanoscience and Microsystems ETDs

Many ferroelectric devices benefit from the ability to deposit thin ferroelectric layers. Poly(vinylidene) fluoride (PVDF) is the prototypical ferroelectric polymer, but processing of thin film ferroelectric PVDF remains a challenge due to the formation of large voids in the film during traditional thin film processing. The research described in this dissertation starts by investigating the origin of these voids. The cause of these voids is found to be caused by vapor induced phase separation (VIPS). Guided by the thermodynamics of VIPS, a process is then designed to produce void-free ferroelectric PVDF thin films on polar and non-polar substrates. The films …


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of …


Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara Dec 2017

Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara

Physics and Astronomy Faculty Publications

The present study examines the interaction of hydrogen and nitrogen plasmas with gallium in an effort to gain insights into the mechanisms behind the synergetic effect of plasma and a catalytic metal. Absorption/desorption experiments were performed, accompanied by theoretical-computational calculations. Experiments were carried out in a plasma-enhanced, Ga-packed, batch reactor and entailed monitoring the change in pressure at different temperatures. The results indicated a rapid adsorption/dissolution of the gas into the molten metal when gallium was exposed to plasma, even at a low temperature of 100 °C. The experimental observations, when hydrogen was used, indicate that gallium acts as a …


Cellulose Nanofiber-Reinforced Impact Modified Polypropylene: Assessing Material Properties From Fused Layer Modeling And Injection Molding Processing, Jordan Elliott Sanders Dec 2017

Cellulose Nanofiber-Reinforced Impact Modified Polypropylene: Assessing Material Properties From Fused Layer Modeling And Injection Molding Processing, Jordan Elliott Sanders

Electronic Theses and Dissertations

The purpose of this research was to investigate the use of cellulose nanofibers (CNF) compounded into an impact modified polypropylene (IMPP) matrix. A IMPP was used because it shrinks less than a PP homopolymer during FLM processing. An assessment of material properties from fused layer modeling (FLM), an additive manufacturing (AM) method, and injection molding (IM) was conducted. Results showed that material property measurements in neat PP were statistically similar between IM and FLM for density, strain at yield and flexural stiffness. Additionally, PP plus the coupling agent maleic anhydride (MA) showed statistically similar results in comparison of IM and …


Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha Dec 2017

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


Synthesis, Transport, And Thermoelectric Studies Of Topological Dirac Semimetal Cd3as2 For Room Temperature Waste Heat Recovery And Energy Conversion, Tahereh A. Hosseini Dec 2017

Synthesis, Transport, And Thermoelectric Studies Of Topological Dirac Semimetal Cd3as2 For Room Temperature Waste Heat Recovery And Energy Conversion, Tahereh A. Hosseini

Theses and Dissertations

ABSTRACT

SYNTHESIS, TRANSPORT, AND THERMOELECTRIC STUDIES OF TOPOLOGICAL DIRAC SEMIMETAL CD3AS2 FOR ROOM TEMPERATURE WASTE HEAT RECOVERY AND ENERGY CONVERSION

by

The University of Wisconsin-Milwaukee, 2017

Under the Supervision of Professor Nikolai Kouklin

Rising rates of the energy consumption and growing concerns over the climate change worldwide have made energy efficiency an urgent problem to address. Nowadays, almost two-thirds of the energy produced by burning fossil fuels to generate electrical power is lost in the form of the heat. On this front, increasing electrical power generation through a waste heat recovery remains one of the highly promising venues of the …


Structural And Elastic Properties Of Degenerate Sno Monolayers At Finite Temperature, Afsana Sharmin Dec 2017

Structural And Elastic Properties Of Degenerate Sno Monolayers At Finite Temperature, Afsana Sharmin

Graduate Theses and Dissertations

Chalcogen-based layered superconductors with a litharge structure such as FeS and FeSe mono-layers undergo structural and superconducting phase transitions that are tunable by doping. Representing another material platform with a litharge structure but without valence d-electrons, SnO monolayers also display a structural ground state with a degenerate rectangular unit cell at zero temperature and a charge-tunable energy barrier that leads to a thermally-controllable structural phase change. Doped SnO monolayers with rectangular degenerate unit cells give rise to two-dimensional multiferroicity. Their two-dimensional elastic energy landscape adopts a basic analytic expression that is employed to discuss this structural transition. The results contained …


Block Copolymer Nanostructures For Inorganic Oxide Nanopatterning, Krishna Pandey Dec 2017

Block Copolymer Nanostructures For Inorganic Oxide Nanopatterning, Krishna Pandey

MSU Graduate Theses

Self-assembled nature of block copolymer (BCP) makes them ideal for emerging technologies in nanometer scale. The micro phase separation between two or more dissimilar polymer blocks of BCP leads to uniform periodic nanostructures of different domains of dimension in the range of 5-100 nm, good for the development of emerging microelectronic and optoelectronics devices. Molecular weight and chain architecture of each blocks govern the morphology evolution; gives different structure like spherical, micelles, lamellae, cylindrical, gyroid etc. The morphology evolution of BCP nanostructure also depends on different external factors as well. In the first work of this thesis, three external factors …


A Study Of Manganese And Cobalt Incorporated Nickel Oxide Based Core-Shell Magnetic Nanoparticles, Samiul Hasan Dec 2017

A Study Of Manganese And Cobalt Incorporated Nickel Oxide Based Core-Shell Magnetic Nanoparticles, Samiul Hasan

MSU Graduate Theses

The synthesis along with the structural and magnetic properties of manganese (Mn) and cobalt (Co) -incorporated nickel oxide (NiO) inverted core-shell nanoparticles (CSNs) were investigated. The primary objective of this study was to determine the effect of substitution of nickel (Ni) by transition metal ions (Mn2+/Co2+) in affecting the magnetic properties of the resultant CSNs. The core of the CSNs is comprised of NiO and the shell constitutes a Nix(Mn/Co)1-xO phase. The synthesis of the CSNs was accomplished in two steps: first, NiO nanoparticles were synthesized using a thermal decomposition method. In …


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Synthesis Of Graphene And Graphene-Based Composite Membrane, Yuanjun Fan Nov 2017

Synthesis Of Graphene And Graphene-Based Composite Membrane, Yuanjun Fan

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Vibration membrane equipped for earphone requires high performance in both mechanical properties and electronic properties. With extraordinary properties on both, graphene and graphene-based composite materials appear as a promising candidate for this application. Chemical vapor deposition (CVD) is believed to be the most convenient way to synthesize a large area (on scale of square centimeters) as well as a homogeneous thickness for the membrane. The thesis focuses on applying control variable experiment method to analyze different effects on mechanical property of the two CVD setting parameters: cooling rate, and hydrocarbon precursor. For isolating the specimens efficiently, a modified electrochemical method …


Design And Simulation Of A Miniature Cylindrical Mirror Auger Electron Energy Analyzer With Secondary Electron Noise Suppression, Jay A. Bieber Nov 2017

Design And Simulation Of A Miniature Cylindrical Mirror Auger Electron Energy Analyzer With Secondary Electron Noise Suppression, Jay A. Bieber

USF Tampa Graduate Theses and Dissertations

In the nanoscale metrology industry, there is a need for low-cost instruments, which have the ability to probe the structrure and elemental composition of thin films. This dissertation, describes the research performed to design and simulate a miniature Cylindrical Mirror Analyzer, (CMA), and Auger Electron Spectrometer, (AES). The CMA includes an integrated coaxial thermionic electron source. Electron optics simulations were performed using the Finite Element Method, (FEM), software COMSOL. To address the large Secondary Electron, (SE), noise, inherent in AES spectra, this research also included experiments to create structures in materials, which were intended to suppress SE backgound noise in …


S41598-017-16744-0.Pdf, Zlatan Aksamija Nov 2017

S41598-017-16744-0.Pdf, Zlatan Aksamija

Zlatan Aksamija

No abstract provided.


Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki Nov 2017

Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki

Mechanical Engineering ETDs

Carbon nanotubes (CNTs) are a promising candidate for next generation of electrical wirings and electromagnetic interference (EMI) shielding materials due to their exceptional mechanical and electrical properties. Wires and coatings from ultralong nanotubes that are highly crystalline, well-aligned and densely packed can achieve this goal. High-performance CNT conductors will be relatively lightweight and resistant to harsh conditions and therefore can potentially replace current conductors in many industries including aerospace, automotive, gas and oil.

This thesis investigates a new manufacturing approach, based on conventional solution coating and wire drawing methods, to fabricate high conductivity wires and coatings from ultra-long carbon nanotubes. …


Mechanistic Modeling Of Nanoparticle-Stabilized Supercritical Co2 Foams And Its Implication In Field-Scale Eor Applications, Doris Patricia Ortiz Maestre Nov 2017

Mechanistic Modeling Of Nanoparticle-Stabilized Supercritical Co2 Foams And Its Implication In Field-Scale Eor Applications, Doris Patricia Ortiz Maestre

LSU Master's Theses

Previous experimental studies show that nanoparticle-stabilized supercritical CO2 foams (or, NP CO2 foams) can be applied as an alternative to surfactant foams, in order to reduce CO2 mobility in gas injection enhanced oil recovery (EOR). These nanoparticles, if chosen correctly, can be an effective foam stabilizer attached at the fluid interface in a wide range of physicochemical conditions.

By using NP CO2 foam experiments available in the literature, this study performs two tasks: (i) presenting how a mechanistic foam model can be used to fit experimental data and determine required model parameters, and (ii) investigating the …


The Relationship Between Total Neuropathy Score-Reduced, Neuropathy Symptoms And Function., Ashraf Abulhaija Nov 2017

The Relationship Between Total Neuropathy Score-Reduced, Neuropathy Symptoms And Function., Ashraf Abulhaija

USF Tampa Graduate Theses and Dissertations

Chemotherapy Induced Peripheral Neuropathy (CIPN) is a common problem among cancer patients who receive a wide range of chemotherapy. This problem causes a decline in quality of life and increased disabilities. CIPN assessment instruments are either subjective, objective, or a combination of both. So far, there is no agreement on the best way for assessment. The goal of this study was to explore the relationships among subjective and objective CIPN assessment instruments. Specifically, this study aimed to 1) evaluate the relationship between the Total Neuropathy Score-reduced (mainly objective) and patients’ function, as measured by the interference scale of the Chemotherapy-Induced …


Multiple Consecutive Recapture Of Rigid Nanoparticles Using A Solid-State Nanopore Sensor, Jungsoo Lee Nov 2017

Multiple Consecutive Recapture Of Rigid Nanoparticles Using A Solid-State Nanopore Sensor, Jungsoo Lee

Mechanical Engineering Research Theses and Dissertations

Solid‐state nanopore sensors have been used to measure the size of a nanoparticle by applying a resistive pulse sensing technique. Previously, the size distribution of the population pool could be investigated utilizing data from a single translocation, however, the accuracy of the distribution is limited due to the lack of repeated data. In this study, we characterized polystyrene nanobeads utilizing single particle recapture techniques, which provide a better statistical estimate of the size distribution than that of single sampling techniques. The pulses and translocation times of two different sized nanobeads (80 nm and 125 nm in diameter) were acquired repeatedly …


Method For Single Crystal Growth Of Photovoltaic Perovskite Material And Devices, Jinsong Huang, Qingfeng Dong Nov 2017

Method For Single Crystal Growth Of Photovoltaic Perovskite Material And Devices, Jinsong Huang, Qingfeng Dong

Department of Mechanical and Materials Engineering: Faculty Publications

Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container , also including at least one small perovskite single crystal , and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows , in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate . For example , a top portion of the substrate external to the solution may be cooled .


The Rheology And Roll-To-Roll Processing Of Shear-Thickening Particle Dispersions, Sunilkumar Khandavalli Nov 2017

The Rheology And Roll-To-Roll Processing Of Shear-Thickening Particle Dispersions, Sunilkumar Khandavalli

Doctoral Dissertations

Particle dispersions are ubiquitous in our daily lives ranging from food and pharmaceutical products to inks. There has been great interest in the recent years in formulation of functional inks to fabricate myriad flexible electronic devices through high-throughput roll-to-roll technologies. The formulations often contain several functional additives or rheological modifiers that can affect the microstructure, rheology and processing. Understanding the rheology of formulations is important for tuning the formulation for optimal processing. This thesis presents investigations on the rheology of particle dispersions and their impact on roll-to-roll technologies. Shear-thickening behavior is common in particle dispersions, particularly, concentrated particulate inks. We …


Aliovalent Dopants In Zno Nanocrystals: Synthesis To Electronic Structure, Dongming Zhou Nov 2017

Aliovalent Dopants In Zno Nanocrystals: Synthesis To Electronic Structure, Dongming Zhou

Doctoral Dissertations

Semiconductor nanocrystal doping has stimulated broad interest for many applications including solar energy conversion, nanospintronics, and phosphors or optical labels. The study of the chemistry and physics of doped colloidal semiconductor nanocrystals has been dominated in the literature by isovalent dopants such as Mn2+ and Co2+ ions in II-VI semiconductors, in which the dopant oxidation state is the same as the cation ions. Until recently, aliovalent dopants has received much attention due to the plasmonic properties. Aliovalent is when the oxidation states of the dopant in the lattice differs from the cation ions. In the plasmonic semiconductor nanocrystals, …


Modeling Of Nanoscale Transport In Mesoporous Membranes, Ashutosh Rathi Nov 2017

Modeling Of Nanoscale Transport In Mesoporous Membranes, Ashutosh Rathi

Doctoral Dissertations

Mesoporous membranes with pore sizes in the range 2-50 nm provide an energy efficient alternative for separation of mixtures such as CO2 from stack effluents and volatile organic compounds (VOC) from air. Transport mechanisms such as capillary condensation, Knudsen diffusion and surface adsorption help in enrichment of a more condensable component based on the bulk mixture thermodynamics, surface chemistry and geometry of the mesopores. Despite the progress in synthesis techniques, design of better mesoporous materials for targeted separations is still a challenge due to the absence of clear design rules. Modeling techniques can be used to quantify the relevant …


Solution-Based Assembly Of Conjugated Polymers Into Nanofibers For Organic Electronics, Daniel E. Acevedo Cartagena Nov 2017

Solution-Based Assembly Of Conjugated Polymers Into Nanofibers For Organic Electronics, Daniel E. Acevedo Cartagena

Doctoral Dissertations

Solution-based crystallization of conjugated polymers offers a scalable and attractive route to develop hierarchical structures for electronic devices. The introduction of well-defined nucleation sites into metastable solutions provides a way to regulate the crystallization behavior, and therefore the morphology of the material. A crystallization method for generating metastable solutions of poly(3-hexylthiophene) (P3HT) was established. These metastable solutions allow P3HT to selectively crystallize into nanofibers (NFs) on graphene-coated surfaces. It was found that the crystallization kinetics is faster with increasing P3HT molecular weight and concentration. Through in situ atomic force microscopy, it was confirmed that NFs grow vertically in a face-on …


Guiding The Self-Assembly Of Block Copolymers In 2d And 3d With Minimal Patterning, Jaewon Choi Nov 2017

Guiding The Self-Assembly Of Block Copolymers In 2d And 3d With Minimal Patterning, Jaewon Choi

Doctoral Dissertations

Directed self-assembly (DSA) of block copolymers (BCPs) based on topographic patterns is one of the most promising strategies for overcoming resolution limitations in the current lithographic process and fabricating the next generation data storage devices. While the DSA of BCPs with deep topographic patterning has been extensively studied both experimentally and theoretically over the past two decades, less attention has been paid to the development of the DSA process using minimal topographic patterning. This dissertation focuses on understanding the effect of minimal topographic patterning on guiding the self-assembly of BCPs in 2D and 3D. We demonstrate that minimal trench patterns …


Rapid Characterization Of Local Shape Memory Properties Through Indentation, Peizhen Li, Haluk E. Karaca, Yang-Tse Cheng Nov 2017

Rapid Characterization Of Local Shape Memory Properties Through Indentation, Peizhen Li, Haluk E. Karaca, Yang-Tse Cheng

Mechanical Engineering Faculty Publications

Shape memory alloys (SMAs) have the ability to show large recoverable shape changes upon temperature, stress or magnetic field cycling. Their shape memory, material and magnetic properties (e.g. transformation temperatures, strain, saturation magnetization and strength) determine their prospects for applications from small-scale microelectromechanical systems to large scale aerospace and biomedical systems. It should be noted that properties of SMAs are highly temperature dependent. Generally, the conventional mechanical characterization methods (e.g, tension, compression, and torsion) are used on bulk samples of SMAs to determine those properties. In this article, it will be shown that indentation technique can be used as an …


Computational Prediction Of Conductivities Of Disk-Shaped Particulate Composites, Jian Qiu Nov 2017

Computational Prediction Of Conductivities Of Disk-Shaped Particulate Composites, Jian Qiu

Electronic Theses and Dissertations

The effective conductivities are determined for randomly oriented disk-shaped particles using an efficient computational algorithm based on the finite element method. The pairwise intersection criteria of disks are developed using a set of vector operations. An element partition scheme has been implemented to connect the elements on different disks across the lines of intersection. The computed conductivity is expressed as a function of the density and the size of the circular disks or elliptical plates. It is further expressed in a power-law form with the key parameters determined from curve fittings. The particle number and the trial number of simulations …