Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Application Of Artificial Neural Network For Evaporative Cooling In Data Centres, Feyisola Adejokun Dec 2016

Application Of Artificial Neural Network For Evaporative Cooling In Data Centres, Feyisola Adejokun

Mechanical and Aerospace Engineering Theses

A data center is a facility that may be used to house telecommunication or storage devices. Because of the 24/7 required operation of a data center, large segments of a data center are geared towards evacuating heat generated from operating one. Data centers entail multiple operating configurations, great amount of constraints and nonlinear correlations. The need to effectively optimize a data center operation presents a daunting challenge. The data center considered in this research is a test bed modular data center (MDC). Comprising of an Information Technology (IT), DEC and IEC module. Typical MDC are dynamic and complex in nature …


Heat Transfer Analysis Of An Oblique Jet Impingement Cooling On Cmc Rough Surface, Karthik Krishna Oct 2016

Heat Transfer Analysis Of An Oblique Jet Impingement Cooling On Cmc Rough Surface, Karthik Krishna

Doctoral Dissertations and Master's Theses

A Ceramic Matrix Composite is high strength and high temperature capability composite, utilized in components like heat shield of space vehicles, flame holders and disc brakes. To be used in both static and dynamic components of a future gas turbine engine and even with high temperature capabilities of these CMC components, convection cooling will still likely be required. The surface of the CMC varies significantly from traditional super-alloy used in a modern engine, with large level of roughness and significant three-dimensional waviness. These complex features will impact the behavior of the near wall flows, and affect the heat transfer rates …


Evaluation Of The Impact Of Slab Foundation Heat Transfer On Heating And Cooling In Florida, Florida Solar Energy Center, Danny Parker Sep 2016

Evaluation Of The Impact Of Slab Foundation Heat Transfer On Heating And Cooling In Florida, Florida Solar Energy Center, Danny Parker

FSEC Energy Research Center®

The U.S. Department of Energy's Building America Partnership for Improved Residential Construction (BA-PIRC) performed experiments in the Florida Solar Energy Center's Flexible Residential Test Facility intended to assess for the first time (1) how slab-on-grade construction influences interior cooling in a cooling-dominated climate and (2) how the difference in a carpeted versus uncarpeted building might influence heating and cooling energy use.


Final Report: Cooling Seasonal Energy And Peak Demand Impacts Of Improved Duct Insulation On Fixed-Capacity (Seer 13) And Variable-Capacity (Seer 22) Heat Pumps, Florida Solar Energy Center, Charles Withers, Jr. Sep 2016

Final Report: Cooling Seasonal Energy And Peak Demand Impacts Of Improved Duct Insulation On Fixed-Capacity (Seer 13) And Variable-Capacity (Seer 22) Heat Pumps, Florida Solar Energy Center, Charles Withers, Jr.

FSEC Energy Research Center®

Previous phase 1, 2, and 3 research identified that duct conductive losses to an attic environment imposed greater relative energy losses for the variable-capacity systems compared to the fixed-capacity systems (Cummings and Withers 2011) because of the longer dwell time of conditioned air in the ducts. The purpose of the Phase 4 experiments reported here was to see if duct R-value enhancement would benefit the overall operating efficiency of the variable-capacity system relatively more than the fixed-capacity system. The current Phase 4 experiments (the primary focus of this report) found that this was a secondary effect.


Flexible Residential Test Facility: Impact Of Infiltration And Ventilation On Measured Cooling Season Energy And Moisture Levels (2016), Florida Solar Energy Center, Danny Parker Sep 2016

Flexible Residential Test Facility: Impact Of Infiltration And Ventilation On Measured Cooling Season Energy And Moisture Levels (2016), Florida Solar Energy Center, Danny Parker

FSEC Energy Research Center®

Originally published in January 2014, this revision of the report clarifies and corrects references to Standard 62.2 as the 2013 version (62.2-2013), and it corrects the total CFM requirement for the subject buildings under the standard. Further, two plots have been updated to distinguish between the mechanical CFM and the total CFM required for the subject buildings under Standard 62.2-2013.


Thermal Energy Storage For Expanded Use Of Data Center Indirect/Direct Evaporative Cooling, Jefferey Luttrell Aug 2016

Thermal Energy Storage For Expanded Use Of Data Center Indirect/Direct Evaporative Cooling, Jefferey Luttrell

Mechanical and Aerospace Engineering Dissertations

Computer cooling system design evolved over time with goals of increasing efficiency and decreasing cost. Early computers were essentially hand-built and very expensive. Reliable operation required aggressive cooling to maintain acceptable component temperatures and this was achieved with relatively low ventilation air temperatures. With time, the scale of operations increased to the point that operating cost began to strongly influence design decisions. Computer room air conditioners consumed substantial amounts of electrical power, in some situations almost as much power as the computer equipment. One cost saving idea used outside air when the ambient temperature fell below the normal cooling supply …


Optimal Design Of Ipm Motors With Different Cooling Systems And Winding Configurations, Alireza Fatemi, Dan M. Ionel, Nabeel Demerdash, Thomas W. Nehl Jul 2016

Optimal Design Of Ipm Motors With Different Cooling Systems And Winding Configurations, Alireza Fatemi, Dan M. Ionel, Nabeel Demerdash, Thomas W. Nehl

Electrical and Computer Engineering Faculty Research and Publications

Performance improvement of permanent magnet (PM) motors through optimization techniques has been widely investigated in the literature. Oftentimes the practice of design optimization leads to derivation/interpretation of optimal scaling rules of PM motors for a particular loading condition. This paper demonstrates how these derivations vary with respect to the machine ampere loading and ferrous core saturation level. A parallel sensitivity analysis using a second-order response surface methodology followed by a large-scale design optimization based on evolutionary algorithms are pursued in order to establish the variation of the relationships between the main design parameters and the performance characteristics with respect to …


Analysis Of A Coupled Micro- And Triple-Impingement Cooling Configuration In The C3x Vane, Chase D. Rossman May 2016

Analysis Of A Coupled Micro- And Triple-Impingement Cooling Configuration In The C3x Vane, Chase D. Rossman

Doctoral Dissertations and Master's Theses

This study attempts to improve the trailing edge protection of a turbine vane by incorporating two concepts from the literature. These two concepts are optimized near wall cooling passages and a triple-impingement configuration in the vane trailing edge. Finally this study explores a CFD conjugate analysis based on the Shear Stress Transport k(l) turbulence model. The overall goal is to produce a more effective cooling configuration by studying the effects of the flow and heat transfer of the dual configuration, while keeping the integrity of the turbine vane. Star-CCM+ was utilized to carry out the computational data on a 3-D …


Cooling And Packaging Of Accumulators For Formula Sae Electric Car, Hang Yin May 2016

Cooling And Packaging Of Accumulators For Formula Sae Electric Car, Hang Yin

Mechanical and Aerospace Engineering Theses

Electric car is the future of automotive industry. The performance of the batteries is vital for that of electric cars. Overheating will compromise the performance of batteries, shorten the life span and even damage the battery permanently. So it is crucial to have an efficient packaging and cooling method. This project using Formula SAE Electric car as the testing ground is dedicated to develop the efficient way of thermal and electronic packaging of accumulators for automobiles.


Computational Investigation Of Impingement Cooling For Regeneratively Cooled Rocket Nozzles, Bianca A. De Angelo May 2016

Computational Investigation Of Impingement Cooling For Regeneratively Cooled Rocket Nozzles, Bianca A. De Angelo

Doctoral Dissertations and Master's Theses

Jet impingement cooling is an internal cooling configuration used in the thermal management of temperature sensitive systems. With rocket engine combustion temperatures rising as high as 3600 K, it is essential for a cooling method to be applied to ensure that the nozzle integrity can be maintained. Therefore, a novel heat transfer study is conducted to investigate if jet impingement cooling is feasible for a regenerative cooling rocket nozzle application. Regenerative cooling for liquid propellant rockets has been widely studied. However, to the best of the author’s knowledge, there is currently no literature describing this method in conjunction with impingement …


The Effect Of Confinement On The Development Of An Axisymmetric Wall Jet In Confined Jet Impingement, Tianqi Guo Apr 2016

The Effect Of Confinement On The Development Of An Axisymmetric Wall Jet In Confined Jet Impingement, Tianqi Guo

Open Access Theses

Impinging jets have been widely used in the industry for cooling, heating, drying and many other purposes due to their excellent level of mass and heat transfer capacities. When issued into a confinement gap fully filled with working liquid, which is a typical configuration for the compact cooling devices designed to handle the extremely high heat fluxes generated by continuously working electronic components, they are classified as submerged confined impingement jets. Though the complicated flow field induced by the jet has attracted enormous amount of research efforts from heat transfer as well as fluid dynamics points of view, many key …


Development Of Intermediate Cooling Technology And Its Control For Two-Stand Plate Rolling, Fei Zhang, Wei Yu, Tao Liu Jan 2016

Development Of Intermediate Cooling Technology And Its Control For Two-Stand Plate Rolling, Fei Zhang, Wei Yu, Tao Liu

Faculty of Engineering and Information Sciences - Papers: Part A

In a plate rolling production line, thermomechanically controlled processing is critical for plate quality. In this paper, a set of intermediate cooling equipment of a two-stand plate mill with super density nozzles, medium pressure, and small flow is developed. Based on a simplified dynamic model, a cooling control scheme with combined feedforward, feedback, and adaptive algorithms is put forward. The new controlled rolling process and the highly efficient control system improve the controlled rolling efficiency by an average of 17.66%. The proposed intermediate cooling system can also effectively inhibit the growth of austenite grain, improve the impact toughness and yield …


Development Of A Novel Phase Change Material Emulsion For Cooling Systems, Jingjing Shao, Jo Darkwa, Georgios Kokogiannakis Jan 2016

Development Of A Novel Phase Change Material Emulsion For Cooling Systems, Jingjing Shao, Jo Darkwa, Georgios Kokogiannakis

Faculty of Engineering and Information Sciences - Papers: Part A

In this paper, a novel phase change material emulsion (PCE-10) consisting of an organic PCM (RT10) and water has been developed. Its thermophysical properties such as heat of fusion, viscosity and sub-cooling temperature have been established. The chemical stability during both storage and discharge periods have also been evaluated. The results indicate low sub-cooling temperature and relatively long period of stability without any sign of segregation but the viscosity was found to be much higher than that of water.Further improvement and experimental studies into its flow characteristics are therefore being encouraged.


An Experimental Investigation Of Heat Transfer For Arrays Of Impingement Jets Onto The Featured Surfaces With Cylindrical And Elliptical Raised Surfaces, Marc A. Medina Jan 2016

An Experimental Investigation Of Heat Transfer For Arrays Of Impingement Jets Onto The Featured Surfaces With Cylindrical And Elliptical Raised Surfaces, Marc A. Medina

Honors Undergraduate Theses

This study focuses on multi-jet impingement for gas turbine geometries in which the objective is to understand the influence of the roughness elements on a target surface to the heat transfer. Current work has proven that implementing roughness elements for multi-jet impingement target surfaces has increased heat transfer ranging anywhere from 10-30%. This study has chosen to investigate three different roughness elements, elliptical in cross-section, to compare to smooth surface geometries for multi-jet impingement. An experimental was taken for this study to extend the current knowledge of multi-jet impingement geometries and to further understand the heat transfer performance. A temperature …