Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Chemical Potential Perturbation: A Method To Predict Chemical Potentials In Periodic Molecular Simulations, Stan G. Moore, Dean R. Wheeler Mar 2011

Chemical Potential Perturbation: A Method To Predict Chemical Potentials In Periodic Molecular Simulations, Stan G. Moore, Dean R. Wheeler

Faculty Publications

A new method, called chemical potential perturbation (CPP), has been developed to predict the chemical potential as a function of density in periodic molecular simulations. The CPP method applies a spatially varying external force field to the simulation, causing the density to depend upon position in the simulation cell. Following equilibration the homogeneous (uniform or bulk) chemical potential as a function of density can be determined relative to some reference state after correcting for the effects of the inhomogeneity of the system. We compare three different methods of approximating this correction. The first method uses the van der Waals density …


Density Functional Theory Study On The Electronic Structure Of N- And P-Type Doped Srtio3 At Anodic Solid Oxide Fuel Cell Conditions, S. Suthirakun, Salai Cheettu Ammal, G. Xiao, Fanglin Chen, Hans-Conrad Zur Loye, Andreas Heyden Jan 2011

Density Functional Theory Study On The Electronic Structure Of N- And P-Type Doped Srtio3 At Anodic Solid Oxide Fuel Cell Conditions, S. Suthirakun, Salai Cheettu Ammal, G. Xiao, Fanglin Chen, Hans-Conrad Zur Loye, Andreas Heyden

Faculty Publications

The electronic conductivity and thermodynamic stability of mixed n-type and p-type doped SrTiO3 have been investigated at anodic solid oxide fuel cell (SOFC) conditions using density functional theory (DFT) calculations. In particular, constrained ab initio thermodynamic calculations have been performed to evaluate the phase stability and reducibility of various Nb- and Ga-doped SrTiO3 at synthesized and anodic SOFC conditions. The density of states (DOS) of these materials was analyzed to study the effects of n- and p-doping on the electronic conductivity. In agreement with experimental observations, we find that the transformation from 20% Nb-doped Sr-deficient SrTiO3 to a non-Sr-deficient phase …