Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Heat Transfer Analysis Of An Oblique Jet Impingement Cooling On Cmc Rough Surface, Karthik Krishna Oct 2016

Heat Transfer Analysis Of An Oblique Jet Impingement Cooling On Cmc Rough Surface, Karthik Krishna

Doctoral Dissertations and Master's Theses

A Ceramic Matrix Composite is high strength and high temperature capability composite, utilized in components like heat shield of space vehicles, flame holders and disc brakes. To be used in both static and dynamic components of a future gas turbine engine and even with high temperature capabilities of these CMC components, convection cooling will still likely be required. The surface of the CMC varies significantly from traditional super-alloy used in a modern engine, with large level of roughness and significant three-dimensional waviness. These complex features will impact the behavior of the near wall flows, and affect the heat transfer rates …


Analysis Of A Coupled Micro- And Triple-Impingement Cooling Configuration In The C3x Vane, Chase D. Rossman May 2016

Analysis Of A Coupled Micro- And Triple-Impingement Cooling Configuration In The C3x Vane, Chase D. Rossman

Doctoral Dissertations and Master's Theses

This study attempts to improve the trailing edge protection of a turbine vane by incorporating two concepts from the literature. These two concepts are optimized near wall cooling passages and a triple-impingement configuration in the vane trailing edge. Finally this study explores a CFD conjugate analysis based on the Shear Stress Transport k(l) turbulence model. The overall goal is to produce a more effective cooling configuration by studying the effects of the flow and heat transfer of the dual configuration, while keeping the integrity of the turbine vane. Star-CCM+ was utilized to carry out the computational data on a 3-D …


Computational Investigation Of Impingement Cooling For Regeneratively Cooled Rocket Nozzles, Bianca A. De Angelo May 2016

Computational Investigation Of Impingement Cooling For Regeneratively Cooled Rocket Nozzles, Bianca A. De Angelo

Doctoral Dissertations and Master's Theses

Jet impingement cooling is an internal cooling configuration used in the thermal management of temperature sensitive systems. With rocket engine combustion temperatures rising as high as 3600 K, it is essential for a cooling method to be applied to ensure that the nozzle integrity can be maintained. Therefore, a novel heat transfer study is conducted to investigate if jet impingement cooling is feasible for a regenerative cooling rocket nozzle application. Regenerative cooling for liquid propellant rockets has been widely studied. However, to the best of the author’s knowledge, there is currently no literature describing this method in conjunction with impingement …


An Investigation Of Cooling Configurations In Gas Turbine Engines Using Jet Impingement, Bhushan Upalkar Dec 2015

An Investigation Of Cooling Configurations In Gas Turbine Engines Using Jet Impingement, Bhushan Upalkar

Doctoral Dissertations and Master's Theses

A numerical investigation for predicting the heat transfer effects of turbulence was conducted by making a scaled-up model of a section in a jet impingement channel. Different turbulence models were run and the results were compared to experimental data. Experimental comparisons were made for impingement channels between a baseline case, which is a rectangular array of jets of 20 rows and 3 jets per row, and different hole spacing configurations. The heat transfer was measured using Temperature Sensitive Paint. The turbulence model v²-f gave the most accurate prediction with an error of about 17% with the EB k-E, with an …


Assessment Of The Thermal Advantages Of Biased Supersonic Cooling, Michael J. Carkin Apr 2014

Assessment Of The Thermal Advantages Of Biased Supersonic Cooling, Michael J. Carkin

Doctoral Dissertations and Master's Theses

The following work investigates an alternative supersonic film cooling method for hydrogen-fueled, gas-generator cycle rocket engines. The research is intended to serve as an initial proof-of-concept for a biased supersonic film cooling method envisioned for nozzle extension thermal management. The proposed method utilizes a dual-stream injection process that leverages the high heat capacity of the fuel-rich gas-generator gases. By comparing the proposed cooling strategy to the conventional mixed injection process, the research numerically validates the biased supersonic film cooling scheme for low supersonic slot Mach numbers. The average film cooling effectiveness was improved 5%-8% with increases as high as 12%. …


Singular Superposition/Boundary Element Method For Reconstruction Of Multi-Dimensional Heat Flux Distributions With Application To Film Cooling Holes, Mahmood Silieti, Eduardo Divo, Alain J. Kassab Jan 2009

Singular Superposition/Boundary Element Method For Reconstruction Of Multi-Dimensional Heat Flux Distributions With Application To Film Cooling Holes, Mahmood Silieti, Eduardo Divo, Alain J. Kassab

Publications

A hybrid singularity superposition/boundary element-based inverse problem method for the reconstruction of multi-dimensional heat flux distributions is developed. Cauchy conditions are imposed at exposed surfaces that are readily reached for measurements while convective boundary conditions are unknown at surfaces that are not amenable to measurements such as the walls of the cooling holes. The purpose of the inverse analysis is to determine the heat flux distribution along cooling hole surfaces. This is accomplished in an iterative process by distributing a set of singularities (sinks) inside the physical boundaries of the cooling hole (usually along cooling hole centerline) with a given …


Theoretical Analysis Of Transpiration Cooling Of A Liquid Rocket Thrust Chamber Wall, Philip A. Davis Jul 2006

Theoretical Analysis Of Transpiration Cooling Of A Liquid Rocket Thrust Chamber Wall, Philip A. Davis

Master's Theses - Daytona Beach

Transpiration cooling is a process that could reduce the overall weight of the cooling system of an actively cooled thrust chamber wall of a liquid rocket engine by up to 50% when compared to other active cooling techniques, increasing the thrust to weight ratio of the rocket engine. In this thesis, mathematical models and computer codes were developed for simulating the flow of a coolant and the transport phenomena in a transpiration cooled thrust chamber wall of a liquid rocket engine by treating the coolant in two ways: as an incompressible fluid and as a compressible fluid in local thermal …