Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Data-Driven Predictive Modeling To Enhance Search Efficiency Of Glowworm-Inspired Robotic Swarms In Multiple Emission Source Localization Tasks, Payal Nandi Aug 2023

Data-Driven Predictive Modeling To Enhance Search Efficiency Of Glowworm-Inspired Robotic Swarms In Multiple Emission Source Localization Tasks, Payal Nandi

Mechanical & Aerospace Engineering Theses & Dissertations

In time-sensitive search and rescue applications, a team of multiple mobile robots broadens the scope of operational capabilities. Scaling multi-robot systems (< 10 agents) to larger robot teams (10 – 100 agents) using centralized coordination schemes becomes computationally intractable during runtime. One solution to this problem is inspired by swarm intelligence principles found in nature, offering the benefits of decentralized control, fault tolerance to individual failures, and self-organizing adaptability. Glowworm swarm optimization (GSO) is unique among swarm-based algorithms as it simultaneously focuses on searching for multiple targets. This thesis presents GPR-GSO—a modification to the GSO algorithm that incorporates Gaussian Process Regression (GPR) based data-driven predictive modeling—to improve the search efficiency of robotic swarms in multiple emission source localization tasks. The problem formulation and methods are presented, followed by numerical simulations to illustrate the working of the algorithm. Results from a comparative analysis show that the GPR-GSO algorithm exceeds the performance of the benchmark GSO algorithm on evaluation metrics of swarm size, search completion time, and travel distance.


A Bibliometric Perspective Survey Of Iot Controlled Ai Based Swarm Robots, Rhea Sawant, Ariz Shaikh, Chetna Singh, Aman Aggarwal, Shivali Amit Wagle, Harikrishnan R, Priti Shahane May 2021

A Bibliometric Perspective Survey Of Iot Controlled Ai Based Swarm Robots, Rhea Sawant, Ariz Shaikh, Chetna Singh, Aman Aggarwal, Shivali Amit Wagle, Harikrishnan R, Priti Shahane

Library Philosophy and Practice (e-journal)

Robotics is the ­new-age domain of technology that deals with bringing a collaboration of all disciplines of sciences and engineering to create a mechanical machine that may or may not work entirely independently but definitely focuses on making human lives much easier. It has repeatedly shown its ability to change lives at home and in the industry. As the field of robotics research grows and reaches new worlds, the military is one area where advances can have a significant impact, and the government is aware of this. Military technology has come a long way from the days where soldiers had …


Artificial Intelligence And Game Theory Controlled Autonomous Uav Swarms, Janusz Kusyk, M. Umit Uyar, Kelvin Ma, Eltan Samoylov, Ricardo Valdez, Joseph Plishka, Sagor E. Hoque, Giorgio Bertoli, Jefrey Boksiner Jul 2020

Artificial Intelligence And Game Theory Controlled Autonomous Uav Swarms, Janusz Kusyk, M. Umit Uyar, Kelvin Ma, Eltan Samoylov, Ricardo Valdez, Joseph Plishka, Sagor E. Hoque, Giorgio Bertoli, Jefrey Boksiner

Publications and Research

Autonomous unmanned aerial vehicles (UAVs) operating as a swarm can be deployed in austere environments, where cyber electromagnetic activities often require speedy and dynamic adjustments to swarm operations. Use of central controllers, UAV synchronization mechanisms or pre-planned set of actions to control a swarm in such deployments would hinder its ability to deliver expected services. We introduce artificial intelligence and game theory based flight control algorithms to be run by each autonomous UAV to determine its actions in near real-time, while relying only on local spatial, temporal and electromagnetic (EM) information. Each UAV using our flight control algorithms positions itself …


Robot Localization Obtained By Using Inertial Measurements, Computer Vision, And Wireless Ranging, William Baker Jan 2015

Robot Localization Obtained By Using Inertial Measurements, Computer Vision, And Wireless Ranging, William Baker

Graduate College Dissertations and Theses

Robots have long been used for completing tasks that are too difficult, dangerous, or distant to be accomplished by humans. In many cases, these robots are highly specialized platforms - often expensive and capable of completing every task related to a mission's objective. An alternative approach is to use multiple platforms, each less capable in terms of number of tasks and thus significantly less complex and less costly. With advancements in embedded computing and wireless communications, multiple such platforms have been shown to work together to accomplish mission objectives. In the extreme, collections of very simple robots have demonstrated emergent …


Distributed Control For Robotic Swarms Using Centroidal Voronoi Tessellations, Shelley Rounds Dec 2008

Distributed Control For Robotic Swarms Using Centroidal Voronoi Tessellations, Shelley Rounds

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This thesis introduces a design combining an emerging area in robotics with a well established mathematical research topic: swarm intelligence and Voronoi tessellations, respectively. The main objective for this research is to design an economical and robust swarm system to achieve distributed control. This research combines swarm intelligence with Voronoi tessellations to localize a source and create formations. Extensive software coding must be implemented for this design, such as the development of a discrete centroidal Voronoi tessellation (CVT) algorithm.

The ultimate purpose of this research is to advance the existing Mobile Actuator and Sensor Network (MASnet) platform to eventually develop …