Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Robotics

Robot

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 47

Full-Text Articles in Engineering

Dual-Axis Precision Imager, Gary Huarng Jun 2022

Dual-Axis Precision Imager, Gary Huarng

Computer Engineering

The Dual-Axis Precision Imager (DAPI) is a drawing robot that processes images and draws them on a whiteboard. The system has two modes: a Sobel filter mode that finds the edges of the input image with a Sobel filter, and a tri-tone grayscale mode that approximates the shading of the input image with the colors white, gray, and black. The DAPI consists of an Arduino-controlled XY gantry system with a pen mounted on the gantry head, and a Processing IDE program that processes the original image, converts the processed image into gantry instructions, and sends them to the Arduino for …


Autonomous Navigator Mobile Robot Upgrade, David Sansoucy Apr 2022

Autonomous Navigator Mobile Robot Upgrade, David Sansoucy

Thinking Matters Symposium

The mobile robot platform has been developed over the course of 10 years at USM. In Spring 2020, Belle-Isle and Werner updated the previous framework by rewriting the software to use the ROS framework running on an on-board Raspberry Pi 3. They also implemented navigation using an A* motion planning algorithm and image processing. In Summer 2021, Ames incorporated Lidar and Kinect sensors onto the robot to improve its real-time navigation capabilities. He also made improvements to the power distribution systems. This project aimed to build on the ROS frameworks developed by the previous 2 teams with the main goal …


Design And Analysis Of Marangoni-Driven Robotic Surfers, Mitchel L. Timm Jan 2022

Design And Analysis Of Marangoni-Driven Robotic Surfers, Mitchel L. Timm

Dissertations, Master's Theses and Master's Reports

We designed and experimentally studied the dynamics of two robotic systems that surf along the water-air interface. The robots were self-propelled by means of creating and maintaining a surface tension gradient resulting from an asymmetric release of isopropyl alcohol (IPA). The imbalance in the distribution of surface tension surrounding the robots generates a propulsive force commonly referred to as Marangoni propulsion. First, we considered a single surfer, which was custom-made with novel control mechanisms that allow for both forward motion and steering to be remotely adjusted solely through the manipulation of local surface stresses. We analyzed the performance of this …


Garden Bot: Autonomous Home Garden Weed Removal Robot, Brendon Lovejoy, Robert Connolly, Isaac Lucas, Stevan Veselinov Jan 2022

Garden Bot: Autonomous Home Garden Weed Removal Robot, Brendon Lovejoy, Robert Connolly, Isaac Lucas, Stevan Veselinov

Williams Honors College, Honors Research Projects

With frequent weeding being a tedious chore and an essential task for a successful garden, there is need for an automated method of handling this routine. Existing technologies utilize computer vision, GPS, multiple units and other tools to remove weeds from garden plots. However, these solutions are often complex and expensive, suited for large agricultural plots in contrast to small-scale home gardens. In addition, many of these technologies, along with manual tillers and cultivators suited for home use, are unable to perform weeding within rows of crops in a process known as intra-row weeding. The Garden Bot is an autonomous, …


Path Planning With Deep Neural Networks, Paul Simmerling, Brendan Sayers, Paulo Alcantara Silva May 2021

Path Planning With Deep Neural Networks, Paul Simmerling, Brendan Sayers, Paulo Alcantara Silva

Honors Scholar Theses

This report will cover the work and plans of the ECE 2107 Senior design team. The goal of the project is to design and build a fully autonomous self-driving car. This car will have a complete sensor suite including LIDAR, an IMU, a camera, and encoders. It will be based on a multi-level system where the highest level uses a neural network for advanced signal processing and analysis. The current state of the project is discussed as well as the final results. Project management and other constraints will be briefly investigated. This team is building a self driving car testbed …


Integration Of Robotic And Electro-Pneumatic Systems Using Advanced Control And Communication Schemes, Chinmay Kondekar Jan 2021

Integration Of Robotic And Electro-Pneumatic Systems Using Advanced Control And Communication Schemes, Chinmay Kondekar

Dissertations, Master's Theses and Master's Reports

Modern industrial automation systems are designed by interconnecting various subsystems which work together to perform a process. The thesis project aims to integrate fragmented subsystems into a flexible and reconfigurable system through advanced communication protocols and perform a process to demonstrate the effectiveness of interconnected systems.

The system consists of three six-axis robots, one electro-pneumatic robot, and two conveyors connected using EthernetIP communication and hardwired connections. The interconnected system works together to perform machining of a workpiece using advanced control methods of CAD to robot path generation, central control through a PLC, and process control through HMI.

Standardized programming blocks …


Design Of A Robotic Inspection Platform For Structural Health Monitoring, Jason R. Soto Jun 2020

Design Of A Robotic Inspection Platform For Structural Health Monitoring, Jason R. Soto

FIU Electronic Theses and Dissertations

Actively monitoring infrastructure is key to detecting and correcting problems before they become costly. The vast scale of modern infrastructure poses a challenge to monitoring due to insufficient personnel. Certain structures, such as refineries, pose additional challenges and can be expensive, time-consuming, and hazardous to inspect.

This thesis outlines the development of an autonomous robot for structural-health-monitoring. The robot is capable of operating autonomously in level indoor environments and can be controlled manually to traverse difficult terrain. Both visual and lidar SLAM, along with a procedural-mapping technique, allow the robot to capture colored-point-clouds.

The robot is successfully able to automate …


Autonomous Butter Robot, David Chau, Michael Hegglin Jun 2020

Autonomous Butter Robot, David Chau, Michael Hegglin

Computer Engineering

Don’t you wish your butter would come to you? Well now it can with the patented Michael and David butter robot! Based on an idea from a TV show, our team set out to see if a similar robot was possible to make in real life. The objective was simple. Can we make a small table sized robot that can bring a person butter using image detection software? With that question in mind we set out buying our components. We wanted to keep it small, so we looked up devices that could do simple image processing and from there we …


Surface Autonomous Vehicle For Emergency Rescue, Max Emerick, Ryan Shields, Christopher Feickert, Raymond Impara Jun 2020

Surface Autonomous Vehicle For Emergency Rescue, Max Emerick, Ryan Shields, Christopher Feickert, Raymond Impara

Mechanical Engineering

The goal of this document is to clearly define the problem parameters and project objectives and to clearly describe the design process, planned final design, and manufacturing and testing procedures for the senior design project of Team 26: SAVER -- the Surface Autonomous Vehicle for Emergency Rescue. This is both for the purpose of project planning and for clear communication between all parties involved in the project.

The objective of the SAVER project is to develop a proof of concept for an autonomous maritime search and rescue vehicle for aiding in man-overboard missions. To accomplish this goal, a list of …


Chapman Ambassador Tour Robot, Alexandra Lewandowski, Yanni Parissis, Khiry Carter, Hilary Lee Dec 2019

Chapman Ambassador Tour Robot, Alexandra Lewandowski, Yanni Parissis, Khiry Carter, Hilary Lee

Student Scholar Symposium Abstracts and Posters

Being a student ambassador improves a student's confidence and leadership skills. With an increasing demand for technology skills, our project will display how the ambassador robot can assist student ambassadors while improving upon their efficiency, by discussing information during college campus tours and familiarizing students with robot applications and their technology. The ambassador robot can support students during tours by answering a question about specific knowledge that may have slipped an ambassador's mind. The robot will also be able to create a group-focused atmosphere that will allow ambassadors to have the opportunity to lean on a dependable teammate for specific …


Planr.: Planar Learning Autonomous Navigation Robot, Gabrielle S. Santamorena, Daniel Kasman, Jesus Mercado, Ben Klave, Andrew Weisman, Anthony Fortner Jun 2019

Planr.: Planar Learning Autonomous Navigation Robot, Gabrielle S. Santamorena, Daniel Kasman, Jesus Mercado, Ben Klave, Andrew Weisman, Anthony Fortner

Computer Engineering

PLANR is a self-contained robot capable of mapping a space and generating 2D floor plans of a building while identifying objects of interest. It runs Robot Operating System (ROS) and houses four main hardware components. An Arduino Mega board handles the navigation, while an NVIDIA Jetson TX2, holds most of the processing power and runs ROS. An Orbbec Astra Pro stereoscopic camera is used for recognition of doors, windows and outlets and the RPLiDAR A3 laser scanner is able to give depth for wall detection and dimension measurements. The robot is intended to operate autonomously and without constant human monitoring …


Towards A Prototype Platform For Ros Integrations On A Ground Robot, Taylor Joseph Linville Whitaker May 2019

Towards A Prototype Platform For Ros Integrations On A Ground Robot, Taylor Joseph Linville Whitaker

Graduate Theses and Dissertations

The intent of this work was to develop, evaluate, and demonstrate a prototype robot platform on which ROS integrations could be explored. With observations of features and requirements of existing industrial and service mobile ground robots, a platform was designed and outfitted with appropriate components to enable the most common operational-critical functionalities and account for unforeseen components and features. The resulting Arlo Demonstration Robot accommodates basic mapping, localization, and navigation in both two and three-dimensional space as well as additional safety and teleoperation features. The control system is centered around the Zybo Z7 FPGA SoC hosting a custom hardware design. …


Autonomous Combat Robot, Andrew J. Szabo Ii, Chris Heldman, Tristin Weber, Tanya Tebcherani, Holden Leblanc, Fabian Ardeljan Jan 2019

Autonomous Combat Robot, Andrew J. Szabo Ii, Chris Heldman, Tristin Weber, Tanya Tebcherani, Holden Leblanc, Fabian Ardeljan

Williams Honors College, Honors Research Projects

This honors project will also serve as an engineering senior design project.

The objective is to design and build the software and electrical systems for a 60 lb weight class combat robot that will function autonomously and outperform manually driven robots during competition.

While running autonomously, the robot will use LiDAR sensors to detect and attack opponent robots. This robot will also be able to be remote controlled in manual mode. This will mitigate the risk in case the autonomy or sensors fail. LED lights on the robot will indicate whether it is in autonomous or manual mode. The system …


Roborodentia Final Report, Trevor James Gesell, Zeph Colby Nord, Mitchell Tyler Myjak Jun 2018

Roborodentia Final Report, Trevor James Gesell, Zeph Colby Nord, Mitchell Tyler Myjak

Computer Engineering

The Senior Project consisted of competing in Roborodentia, a competition in which groups build robots to complete a particular task. This event took place at the Cal Poly Open House on Saturday, April 12th, 2018. For the competition, the robot was to collect Nerf balls from supply tubes raised approximately 7” from the board and shoot them into nets placed along the opposite side of the course. The design, manufacture, and testing of the robot began the first week of Cal Poly winter quarter and lasted until the day of the competition.


Darling, Robot For Roborodentia 2018, Michael Le, Steven Liu Jun 2018

Darling, Robot For Roborodentia 2018, Michael Le, Steven Liu

Computer Engineering

For our senior project, our group decided to build a robot to participate in Roborodentia 2018, an annual robotics competition overlooked by Professor Seng that takes place during open house. When taking into consideration the classes that Computer Engineering students had to have taken and the skills that we have developed throughout our time here on campus, a robotics project seemed to be an appropriate culmination of both the technical and non-technical skills that we have acquired.


Development Of A Fully Instrumented, Resonant Tensegrity Strut, Kentaro Barhydt Jun 2018

Development Of A Fully Instrumented, Resonant Tensegrity Strut, Kentaro Barhydt

Honors Theses

A tensegrity is a structure composed of a series of rigid members connected in static equilibrium by tensile elements. A vibrating tensegrity robot is an underactuated system in which a set of its struts are vibrated at certain frequency combinations to achieve various locomotive gaits. Evolutionary robotics research lead by Professor John Rieffel focuses on exploiting the complex dynamics of tensegrity structures to control locomotion in vibrating tensegrity robots by finding desired gaits using genetic algorithms. A current hypothesis of interest is that the optimal locomotive gaits of a vibrating tensegrity exist at its resonant frequencies.

In order to observe …


Emerging Role Of Robot-Assisted Occupational Therapy For Children With Down Syndrome, Venera Krasniqi, Nevena Ackovska, Katerina Zdravkova Oct 2017

Emerging Role Of Robot-Assisted Occupational Therapy For Children With Down Syndrome, Venera Krasniqi, Nevena Ackovska, Katerina Zdravkova

UBT International Conference

Robotic technology is becoming increasingly popular as a platform for both education and entertainment. It also provides us with new conceptual directions which might have incredibly positive impact on children with physical growth delays and intellectual disabilities. In this research project, the educational robot Roamer Too from Valiant Technologies has been used to explore the development of social skills of children with Down syndrome. In conjunction with an interactive collaborative environment, this device represents a unique opportunity for these children to fully engage in learning, play, communication, build relationships and have fun. The results of this study indicate that educational …


Answering Food Insecurity: Serving The Community With Food And Knowledge Using Technology, Courtney Simpson Oct 2017

Answering Food Insecurity: Serving The Community With Food And Knowledge Using Technology, Courtney Simpson

Purdue Journal of Service-Learning and International Engagement

The courses of Tech120, CGT110, and ENGT 180/181 and Red Gold at Purdue collaborated to design a robot that would plant and water a garden for a local community charter school. The students centered the project on the users’ needs for fresh food, nutrition education, and early exposure to STEM for children. The school, Anderson Preparatory Academy (APA), is comprised of many children who come from low-income families and are in the free or reduced lunch program. Inspired from “Farm Bot,” a similar system that allows for almost hands-free gardening, the “Boiler Bot” is designed to be scalable so children …


Modeling The Consumer Acceptance Of Retail Service Robots, So Young Song Aug 2017

Modeling The Consumer Acceptance Of Retail Service Robots, So Young Song

Doctoral Dissertations

This study uses the Computers Are Social Actors (CASA) and domestication theories as the underlying framework of an acceptance model of retail service robots (RSRs). The model illustrates the relationships among facilitators, attitudes toward Human-Robot Interaction (HRI), anxiety toward robots, anticipated service quality, and the acceptance of RSRs. Specifically, the researcher investigates the extent to which the facilitators of usefulness, social capability, the appearance of RSRs, and the attitudes toward HRI affect acceptance and increase the anticipation of service quality. The researcher also tests the inhibiting role of pre-existing anxiety toward robots on the relationship between these facilitators and attitudes …


Models For Pedestrian Trajectory Prediction And Navigation In Dynamic Environments, Jeremy N. Kerfs May 2017

Models For Pedestrian Trajectory Prediction And Navigation In Dynamic Environments, Jeremy N. Kerfs

Master's Theses

Robots are no longer constrained to cages in factories and are increasingly taking on roles alongside humans. Before robots can accomplish their tasks in these dynamic environments, they must be able to navigate while avoiding collisions with pedestrians or other robots. Humans are able to move through crowds by anticipating the movements of other pedestrians and how their actions will influence others; developing a method for predicting pedestrian trajectories is a critical component of a robust robot navigation system. A current state-of-the-art approach for predicting pedestrian trajectories is Social-LSTM, which is a recurrent neural network that incorporates information about neighboring …


Underwater Robot, Joseph E. Beck, Matthew Crislip, Cody Bobek, Peyton Lucas Jan 2017

Underwater Robot, Joseph E. Beck, Matthew Crislip, Cody Bobek, Peyton Lucas

Williams Honors College, Honors Research Projects

Remotely Operated Vehicles (ROVs) are remote controlled drones operated by a non-local user. The ROV we plan to build is connected by a tethering wire to a floating buoy that contains an antenna which will send signals between the base station and the ROV. The ROV is equipped with a video camera, ballast system, propulsion system, lights, and a depth sensor. The ROV will transmit a live video feed to the user, while receiving input signals to control its movement from the base station.


Studying The Effects Of Serpentine Soil On Adapted And Non-Adapted Species Using Arduino Technology, Kiana Saniee, Edward Himelblau, Brian Paavo Oct 2016

Studying The Effects Of Serpentine Soil On Adapted And Non-Adapted Species Using Arduino Technology, Kiana Saniee, Edward Himelblau, Brian Paavo

STAR Program Research Presentations

Abstract: Serpentine soils are formed from ultramafic rocks and are represent an extreme environment for plants. Serpentine soils are unique in that they carry high concentrations of heavy metals, are nutrient deficient, particularly in calcium, and have poor water retention capabilities. Although these soils constitute harsh conditions for plant growth, there are a number of species that are adapted and even endemic to serpentine soil. Water retention by commercial potting mix was compared with serpentine soil. Also, serpentine adapted and non-adapted species were grown in both soil treatments and physiological data were collected. We used the Arduino electronic platform to …


Analysis Of Feedback Control Applied With Command Shaping To Minimize Residual Vibration, Nicholas L. Jacobs Aug 2016

Analysis Of Feedback Control Applied With Command Shaping To Minimize Residual Vibration, Nicholas L. Jacobs

Open Access Theses

Joint flexibility is a physical trait that affects all robotic systems to some degree. This characteristic has been shown to be very detrimental to the performance of these robotic systems when implementing fast point-to-point motion. During such motion, the robot will induce vibrations in its structure that will extend past the completion of the move. Many techniques have been applied over the years in order to minimize these residual vibrations. One such method is known as command shaping, which will construct the input profile so as to avoid exciting the natural frequencies of the system. This work seeks to extend …


Roborodentia Robot: Tektronix, Sean Yap Jun 2016

Roborodentia Robot: Tektronix, Sean Yap

Computer Engineering

Tektronix is a robot created to compete in the 2016 Roborodentia Competition. This report details the full function and implementation of the robot.


Roborodentia 2016: Scorpion, Tyler Whalen Jun 2016

Roborodentia 2016: Scorpion, Tyler Whalen

Computer Engineering

This report showcases my entry into the Roborodentia 2016 competition, and my senior project. I chose this project because robotics has always interested me, and this was a great opportunity to jump in headfirst.

I will step through my design decisions and detail all information necessary for replicating this build.


Roborodentia Robot (Amazon Prime), Alec Cheung Jun 2016

Roborodentia Robot (Amazon Prime), Alec Cheung

Computer Science and Software Engineering

Roborodentia is an annual autonomous robotics competition sponsored and hosted by Cal Poly. In the 2016 competition, participants are to design a robot that scores the most points by gathering rings from marked supply pegs and placing them onto marked scoring pegs. For Roborodentia I designed, constructed, and programmed a robot, named Amazon Prime, to compete.


“My Logic Is Undeniable”: Replicating The Brain For Ideal Artificial Intelligence, Samuel C. Adams Apr 2016

“My Logic Is Undeniable”: Replicating The Brain For Ideal Artificial Intelligence, Samuel C. Adams

Senior Honors Theses

Alan Turing asked if machines can think, but intelligence is more than logic and reason. I ask if a machine can feel pain or joy, have visions and dreams, or paint a masterpiece. The human brain sets the bar high, and despite our progress, artificial intelligence has a long way to go. Studying neurology from a software engineer’s perspective reveals numerous uncanny similarities between the functionality of the brain and that of a computer. If the brain is a biological computer, then it is the embodiment of artificial intelligence beyond anything we have yet achieved, and its architecture is advanced …


Localization And Mapping Of Unknown Locations And Tunnels With Unmanned Ground Vehicles, Doris Turnage Jan 2016

Localization And Mapping Of Unknown Locations And Tunnels With Unmanned Ground Vehicles, Doris Turnage

Electronic Theses and Dissertations

The main goals of this research were to enhance a commercial off the shelf (COTS) software platform to support unmanned ground vehicles (UGVs) exploring the complex environment of tunnels, to test the platform within a simulation environment, and to validate the architecture through field testing. Developing this platform will enhance the U. S. Army Engineering Research and Development Center’s (ERDC’s) current capabilities and create a safe and efficient autonomous vehicle to perform the following functions within tunnels: (1) localization (e.g., position tracking) and mapping of its environment, (2) traversing varied terrains, (3) sensing the environment for objects of interest, and …


Dual 7-Degree-Of-Freedom Robotic Arm Remote Teleoperation Using Haptic Devices, Yu-Cheng Wang Sep 2015

Dual 7-Degree-Of-Freedom Robotic Arm Remote Teleoperation Using Haptic Devices, Yu-Cheng Wang

USF Tampa Graduate Theses and Dissertations

A teleoperated system of dual redundant manipulator will be controlled in this thesis. The robot used with the dual redundant manipulator in this thesis is Baxter. Baxter’s redundant robot arms are 7-degree-of-freedom arms. The problem that will be solved in this thesis is optimization of the 7-degree-of-freedom robot arms. The control algorithm of the 7-degree-of-freedom robot arms will be discussed and built. A simulation program will be built to test the control algorithm. Based on the control algorithm, a teleoperation system will be created for Baxter. The controller used is Omni, which is a six-joint haptic device. Omni will also …


Roborodentia Robot 2015, Travis Stuever Jun 2015

Roborodentia Robot 2015, Travis Stuever

Computer Engineering

The Roborodentia 2015 competition was a ring based challenge that had participants move PVC rings from one side of a course to another all within 3 minutes. In order to succeed in this competition there needs to be a good robotic design, thought out use cases, and good solid software.