Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Engineering

A Human-Embodied Drone For Dexterous Aerial Manipulation, Dongbin Kim Dec 2021

A Human-Embodied Drone For Dexterous Aerial Manipulation, Dongbin Kim

UNLV Theses, Dissertations, Professional Papers, and Capstones

Current drones perform a wide variety of tasks in surveillance, photography, agriculture, package delivery, etc. However, these tasks are performed passively without the use of human interaction. Aerial manipulation shifts this paradigm and implements drones with robotic arms that allow interaction with the environment rather than simply sensing it. For example, in construction, aerial manipulation in conjunction with human interaction could allow operators to perform several tasks, such as hosing decks, drill into surfaces, and sealing cracks via a drone. This integration with drones will henceforth be known as dexterous aerial manipulation.

Our recent work integrated the worker’s experience into …


Collaborative Human-Machine Interfaces For Mobile Manipulators., Shamsudeen Olawale Abubakar Dec 2021

Collaborative Human-Machine Interfaces For Mobile Manipulators., Shamsudeen Olawale Abubakar

Electronic Theses and Dissertations

The use of mobile manipulators in service industries as both agents in physical Human Robot Interaction (pHRI) and for social interactions has been on the increase in recent times due to necessities like compensating for workforce shortages and enabling safer and more efficient operations amongst other reasons. Collaborative robots, or co-bots, are robots that are developed for use with human interaction through direct contact or close proximity in a shared space with the human users. The work presented in this dissertation focuses on the design, implementation and analysis of components for the next-generation collaborative human machine interfaces (CHMI) needed for …


Factors Influencing Service Robot Adoption: A Comparative Analysis Of Hotel-Specific Service Robot Acceptance Models, Ying Dong Dec 2021

Factors Influencing Service Robot Adoption: A Comparative Analysis Of Hotel-Specific Service Robot Acceptance Models, Ying Dong

UNLV Theses, Dissertations, Professional Papers, and Capstones

The market for service robots is expected to expand significantly owing to the increasing relevance of service automation under the outbreak of the COVID-19 pandemic. Despite the growing managerial interest in robotic applications in the hotel industry, current robotic research has been mostly conceptual with limited robot data on hand. In light of this issue, this paper will conduct a comparative analysis of hotel-specific service robot acceptance models between the Service Robot Acceptance Model (sRAM) and the Service Robot Integration Willingness (SRIW) framework. By identifying key elements of each service robot acceptance model, this paper puts an emphasis on investigating …


Learning State-Dependent Sensor Measurement Models To Improve Robot Localization Accuracy, Troi André Williams Nov 2021

Learning State-Dependent Sensor Measurement Models To Improve Robot Localization Accuracy, Troi André Williams

USF Tampa Graduate Theses and Dissertations

This dissertation proposes a novel method called state-dependent sensor measurement models (SDSMMs). Such models dynamically predict the state-dependent bias and uncertainty of sensor measurements, ultimately improving fundamental robot tasks such as localization. In our first investigation, we introduced the state-dependent sensor measurement model framework, described their properties, stated the input and output of these models, and described how to train them. We also explained how to integrate such models with an Extended Kalman Filter and a Particle Filter, two popular robot state estimation algorithms. We validated the proposed framework through a series of localization tasks. The results showed that our …


Data-Driven Learning For Robot Physical Intelligence, Leidi Zhao Aug 2021

Data-Driven Learning For Robot Physical Intelligence, Leidi Zhao

Dissertations

The physical intelligence, which emphasizes physical capabilities such as dexterous manipulation and dynamic mobility, is essential for robots to physically coexist with humans. Much research on robot physical intelligence has achieved success on hyper robot motor capabilities, but mostly through heavily case-specific engineering. Meanwhile, in terms of robot acquiring skills in a ubiquitous manner, robot learning from human demonstration (LfD) has achieved great progress, but still has limitations handling dynamic skills and compound actions. In this dissertation, a composite learning scheme which goes beyond LfD and integrates robot learning from human definition, demonstration, and evaluation is proposed. This method tackles …


Motion And Emotion Estimation For Robotic Autism Intervention., Jacob M Berdichevsky Aug 2021

Motion And Emotion Estimation For Robotic Autism Intervention., Jacob M Berdichevsky

Electronic Theses and Dissertations

Robots have recently emerged as a novel approach to treating autism spectrum disorder (ASD). A robot can be programmed to interact with children with ASD in order to reinforce positive social skills in a non-threatening environment. In prior work, robots were employed in interaction sessions with ASD children, but their sensory and learning abilities were limited, while a human therapist was heavily involved in “puppeteering” the robot. The objective of this work is to create the next-generation autism robot that includes several new interactive and decision-making capabilities that are not found in prior technology. Two of the main features that …


Snr: Software Library For Introductory Robotics, Spencer F. Shaw Aug 2021

Snr: Software Library For Introductory Robotics, Spencer F. Shaw

Master's Theses

This thesis introduces "SNR," a Python library for programming robotic systems in the context of introductory robotics courses. Greater demand for roboticists has pressured educational institutions to expand robotics curricula. Students are now more likely to take robotics courses earlier and with less prior programming experience. Students may be attempting to simultaneously learn a systems programming language, a library API, and robotics concepts. SNR is written purely in Python to present familiar semantics, eliminating one of these learning curves. Industry standard robotics libraries such as ROS often require additional build tools and configuration languages. Students in introductory courses frequently lack …


Connecting Islamic Technology And The History Of Robotics In Wikidata Via Wikidatabot, Anchalee Panigabutra-Roberts Jul 2021

Connecting Islamic Technology And The History Of Robotics In Wikidata Via Wikidatabot, Anchalee Panigabutra-Roberts

UT Libraries Faculty: Other Publications and Presentations

My current study is on the connection between the history of robotics and Islamic technology. I focused on early Muslim inventors, such as al-Jazari, from Artuqid Dynasty of Jazira in Mesopotamia (modern day Iraq, Syria and Turkey) who is considered to be the father of robotics. He wrote the Book of Knowledge of Ingenious Mechanical Devices, the manuscript treaty published after his passing in 1206, translated by Donald R. Hill, a British engineer and scholar on Islamic technology, in 1974. The manuscript in Arabic (MS. Greaves 27) is archived at the Bodleian Library, University of Oxford, United Kingdom. In …


Object Manipulation With Modular Planar Tensegrity Robots, Maxine Perroni-Scharf Jun 2021

Object Manipulation With Modular Planar Tensegrity Robots, Maxine Perroni-Scharf

Dartmouth College Undergraduate Theses

This thesis explores the creation of a novel two-dimensional tensegrity-based mod- ular system. When individual planar modules are linked together, they form a larger tensegrity robot that can be used to achieve non-prehensile manipulation. The first half of this dissertation focuses on the study of preexisting types of tensegrity mod- ules and proposes different possible structures and arrangements of modules. The second half describes the construction and actuation of a modular 2D robot com- posed of planar three-bar tensegrity structures. We conclude that tensegrity modules are suitably adapted to object manipulation and propose a future extension of the modular 2D …


A Bibliometric Perspective Survey Of Iot Controlled Ai Based Swarm Robots, Rhea Sawant, Ariz Shaikh, Chetna Singh, Aman Aggarwal, Shivali Amit Wagle, Harikrishnan R, Priti Shahane May 2021

A Bibliometric Perspective Survey Of Iot Controlled Ai Based Swarm Robots, Rhea Sawant, Ariz Shaikh, Chetna Singh, Aman Aggarwal, Shivali Amit Wagle, Harikrishnan R, Priti Shahane

Library Philosophy and Practice (e-journal)

Robotics is the ­new-age domain of technology that deals with bringing a collaboration of all disciplines of sciences and engineering to create a mechanical machine that may or may not work entirely independently but definitely focuses on making human lives much easier. It has repeatedly shown its ability to change lives at home and in the industry. As the field of robotics research grows and reaches new worlds, the military is one area where advances can have a significant impact, and the government is aware of this. Military technology has come a long way from the days where soldiers had …


A Study Of Deep Reinforcement Learning In Autonomous Racing Using Deepracer Car, Mukesh Ghimire May 2021

A Study Of Deep Reinforcement Learning In Autonomous Racing Using Deepracer Car, Mukesh Ghimire

Honors Theses

Reinforcement learning is thought to be a promising branch of machine learning that has the potential to help us develop an Artificial General Intelligence (AGI) machine. Among the machine learning algorithms, primarily, supervised, semi supervised, unsupervised and reinforcement learning, reinforcement learning is different in a sense that it explores the environment without prior knowledge, and determines the optimal action. This study attempts to understand the concept behind reinforcement learning, the mathematics behind it and see it in action by deploying the trained model in Amazon's DeepRacer car. DeepRacer, a 1/18th scaled autonomous car, is the agent which is trained …


Robot Object Detection And Locomotion Demonstration For Eecs Department Tours, Bryson Howell, Ethan Haworth, Chris Mobley, Ian Mulet May 2021

Robot Object Detection And Locomotion Demonstration For Eecs Department Tours, Bryson Howell, Ethan Haworth, Chris Mobley, Ian Mulet

Chancellor’s Honors Program Projects

No abstract provided.


Distance-Based Formation Control Using Decentralized Sensing With Infrared Photodiodes, Steven Williams Mar 2021

Distance-Based Formation Control Using Decentralized Sensing With Infrared Photodiodes, Steven Williams

LSU Master's Theses

This study presents an onboard sensor system for determining the relative positions of mobile robots, which is used in decentralized distance-based formation controllers for multi-agent systems. This sensor system uses infrared photodiodes and LEDs; its effective use requires coordination between the emitting and detecting robots. A technique is introduced for calculating the relative positions based on photodiode readings, and an automated calibration system is designed for future maintenance. By measuring the relative positions of their neighbors, each robot is capable of running an onboard formation controller, which is independent of both a centralized controller and a global positioning-like system (e.g., …


On The Impact Of Gravity Compensation On Reinforcement Learning In Goal-Reaching Tasks For Robotic Manipulators, Jonathan Fugal, Hasan A. Poonawala, Jihye Bae Mar 2021

On The Impact Of Gravity Compensation On Reinforcement Learning In Goal-Reaching Tasks For Robotic Manipulators, Jonathan Fugal, Hasan A. Poonawala, Jihye Bae

Electrical and Computer Engineering Faculty Publications

Advances in machine learning technologies in recent years have facilitated developments in autonomous robotic systems. Designing these autonomous systems typically requires manually specified models of the robotic system and world when using classical control-based strategies, or time consuming and computationally expensive data-driven training when using learning-based strategies. Combination of classical control and learning-based strategies may mitigate both requirements. However, the performance of the combined control system is not obvious given that there are two separate controllers. This paper focuses on one such combination, which uses gravity-compensation together with reinforcement learning (RL). We present a study of the effects of gravity …


Human-Robot Collaboration Enabled By Real-Time Vision Tracking, Travis Deegan Jan 2021

Human-Robot Collaboration Enabled By Real-Time Vision Tracking, Travis Deegan

Electronic Theses and Dissertations

The number of robotic systems in the world is growing rapidly. However, most industrial robots are isolated in caged environments for the safety of users. There is an urgent need for human-in-the-loop collaborative robotic systems since robots are very good at performing precise and repetitive tasks but lack the cognitive ability and soft skills of humans. To fill this need, a key challenge is how to enable a robot to interpret its human co-worker’s motion and intention. This research addresses this challenge by developing a collaborative human-robot interface via innovations in computer vision, robotics, and system integration techniques. Specifically, this …


Design Of Lower Legs Of Mithra, A High-Performance Backdrivable Humanoid Robot, Drake Taylor Jan 2021

Design Of Lower Legs Of Mithra, A High-Performance Backdrivable Humanoid Robot, Drake Taylor

Electronic Theses and Dissertations

This thesis presents the design of the knee and ankle of Mithra, a new humanoid robot that aims to be an energy-efficient and highly agile machine. Mithra makes use of new optimization metrics for legged robots to develop a system capable of mimicking human movement. A series of low-impedance, high-torque actuator systems were developed with the goal of creating lightweight, powerful, and robust motion. The structure of Mithra's legs mimics the human structure in leg segment length and weight proportions. Detailed design and analysis were conducted in order to allow Mithra to be a robust and maintainable system. Mithra will …


Design, Manufacture, And Test Of A Hybrid Aerial-Ground Robotic Platform, William Garrett Willmon Jan 2021

Design, Manufacture, And Test Of A Hybrid Aerial-Ground Robotic Platform, William Garrett Willmon

Electronic Theses and Dissertations

A hybrid aerial-ground robotic platform allows for enhanced functionality combining most of the operational profiles of an aerial and ground vehicle with applications to intelligence, surveillance, reconnaissance (ISR), infrastructure inspection, emergency response, photography, etc. Motivated by this challenge, we designed, developed, and tested a prototype hybrid aerial-ground robotic vehicle capable of guidance, navigation, and control in the air and on the ground. The thesis focus is on the system design. As such, at first, we designed and analyzed the mechanical component to ensure durability. We then designed the electrical component to reduce overall weight and maximize battery life. We developed …


Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo Jan 2021

Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo

Graduate Theses, Dissertations, and Problem Reports

Robots’ autonomy has been studied for decades in different environments, but only recently, thanks to the advance in technology and interests, robots for underground exploration gained more attention. Due to the many challenges that any robot must face in such harsh environments, this remains an challenging and complex problem to solve.

As technology became cheaper and more accessible, the use of robots for underground ex- ploration increased. One of the main challenges is concerned with robot localization, which is not easily provided by any Global Navigation Services System (GNSS). Many developments have been achieved for indoor mobile ground robots, making …


Designs And Practical Control Methods For Soft Parallel Robots, Benjamin T. Buzzo Jan 2021

Designs And Practical Control Methods For Soft Parallel Robots, Benjamin T. Buzzo

Graduate Theses, Dissertations, and Problem Reports

The use of soft robotics is becoming an increasingly researched topic, since they can provide more flexibility in movements and increase safety when working with humans. However, they are more susceptible to modeling and manufacturing errors in the design.

The objective of this thesis is two-fold, the first objective is to determine the benefits and limitations of using calibration tables that rely on the PWM signals instead of modeling as a control method. If calibration tables are not adequate to achieve a high level of precision. The second objective is to determine if using a tethered mobile robot in unison …


Active Localization For Robotic Systems: Algorithms And Cost Metrics, Jared Strader Jan 2021

Active Localization For Robotic Systems: Algorithms And Cost Metrics, Jared Strader

Graduate Theses, Dissertations, and Problem Reports

In the real world, a robotic system must operate in the presence of motion and sensing uncertainty. This is caused by the fact that the motion of a robotic system is stochastic due to disturbances from the environment, and the states are only partially observable due noise in the sensor measurements. As a result, the true state of a robotic system is unknown, and estimation techniques must be used to infer the states from the belief, which is the probability distribution over all possible states. Accordingly, a robotic system must be capable of reasoning about the quality of the belief …