Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Hardness Removal By A Continuous Flow Electrochemical Reactor From Different Types Of Water, Shahad Fadhil Alrubaye, Naseer A. Al Haboubi, Hussein A. Al-Amili, Aiman H. Al-Allaq, Dhuha Ahmed Mohammed Jan 2024

Hardness Removal By A Continuous Flow Electrochemical Reactor From Different Types Of Water, Shahad Fadhil Alrubaye, Naseer A. Al Haboubi, Hussein A. Al-Amili, Aiman H. Al-Allaq, Dhuha Ahmed Mohammed

Mechanical & Aerospace Engineering Faculty Publications

The present study focuses on the technique of hardness removal by using a novel reactor performing an electrocoagulation (EC) process. The variation of alkalinity is also recorded. Continuous flow experiments were conducted for Total Hardness (TH) removal using a transparent plastic reactor using aluminum plate electrodes that have holes so that the water flows through the plates in a zigzag way. The influence of various operating parameters such as the number of plates (two and four), flow rate (600, 1000 L/h), and water type (Tigris River & rejected water from Reverse Osmosis system RO) was investigated. The results showed that …


Direct Energy Deposition Of Mo Powder Prepared By Electrode Induction Melting Gas Atomization, Goo Won Roh, Eun Soo Park, Jaeyun Moon, Hojun Lee, Jongmin Byun Jan 2021

Direct Energy Deposition Of Mo Powder Prepared By Electrode Induction Melting Gas Atomization, Goo Won Roh, Eun Soo Park, Jaeyun Moon, Hojun Lee, Jongmin Byun

Mechanical Engineering Faculty Research

Molybdenum (Mo) is used to form a barrier layer for metal wiring in displays or semiconductor devices. Recently, researches have been continuously attempted to fabricate Mo sputtering targets through additive manufacturing. in this study, spherical Mo powders with an average particle size of about 37 um were manufactured by electrode induction melting gas atomization. Subsequently, Mo layer with a thickness of 0.25 mm was formed by direct energy deposition in which the scan speed was set as a variable. According to the change of the scan speed, pores or cracks were found in the Mo deposition layer. Mo layer deposited …


Bending Nanoindentation And Plasticity Noise In Fcc Single And Polycrystals, Ryder Bolin, Hakan Yavas, Hengxu Song, Kevin J. Hemker, Stefanos Papanikolaou Jan 2019

Bending Nanoindentation And Plasticity Noise In Fcc Single And Polycrystals, Ryder Bolin, Hakan Yavas, Hengxu Song, Kevin J. Hemker, Stefanos Papanikolaou

Faculty & Staff Scholarship

Abstract: We present a high-throughput nanoindentation study of in situ bending effects on incipient plastic deformation behavior of polycrystalline and single-crystalline pure aluminum and pure copper at ultranano depths (< 200 nm). We find that hardness displays a statistically inverse dependence on in-plane stress for indentation depths smaller than 10 nm, and the dependence disappears for larger indentation depths. In contrast, plastic noise in the nanoindentation force and displacement displays statistically robust noise features, independently of applied stresses. Our experimental results suggest the existence of a regime in Face Centered Cubic (FCC) crystals where ultranano hardness is sensitive to residual applied stresses, but plasticity pop-in noise is insensitive to it.


Direct Metal Laser-Sintered Stainless Steel: Comparison Of Microstructure And Hardness Between Different Planes, M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar Apr 2018

Direct Metal Laser-Sintered Stainless Steel: Comparison Of Microstructure And Hardness Between Different Planes, M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Microstructural analysis and micro-hardness measurements were performed on different planes of 316L stainless steel fabricated by direct metal laser sintering (DMLS) technique. A fine cellular network was observed within the steel microstructure, where morphology of most cells changed from columnar on XZ-plane (vertical section) to equiaxed on XY-plane (horizontal section). Correspondingly, morphology of most grains was found to alter from columnar for the XZ-plane to equiaxed in the case of the XY-plane. Moreover, X-ray diffraction (XRD) analysis revealed a fully austenitic structure for both the planes. The average micro-hardness value for the XZ-plane and XY-plane was insignificantly (≈ 3%) different, …


Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime Nov 2017

Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime

FIU Electronic Theses and Dissertations

In this study, the effect of ultrasonic treatment (UST) parameters such as amplitude, sonication time, and melt temperature on microstructure and microhardness of Al 6061 alloy is evaluated. The effect of UST on the dispersion of tungsten disulfide (WS2) and carbon nanotubes (CNT) as reinforcement particles in Al 6061 during casting is also studied. The cast Al 6061 with UST demonstrated 32% grain size reduction and 8% increase in the microhardness for optimum processing conditions. The cavitation process induced by UST is responsible for the refinement in microstructure and increase of hardness by enhancing the degassing and nucleation …


Design And Fabrication Of Functionally Graded Material From Ti To Γ-Tial By Laser Metal Deposition, Xueyang Chen, Lei Yan, Joseph William Newkirk, Frank W. Liou Aug 2017

Design And Fabrication Of Functionally Graded Material From Ti To Γ-Tial By Laser Metal Deposition, Xueyang Chen, Lei Yan, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

Functionally graded material (FGM) is one kind of advanced material characterized by a gradual change in properties as the position varies. The spatial variation of compositional and microstructure over volume is aimed to control corresponding functional properties. In this research, when 100% γ-TiAl was directly deposited on pure Ti substrate, cracks were formed within the γ-TiAl layer. Then a six-layer crack-free functionally graded material of Ti/TiAl was designed and fabricated by laser metal deposition (LMD) method, with composition changing from pure Ti on one side to 100% γ-TiAl on the other side. The fabricated FGM was characterized for material properties …


Nanoindentation Of The A And C Domains In A Tetragonal Batio3 Single Crystal, Young-Bae Park, Matthew J. Dicken, Zhi-Hui Xu, Xiaodong Li Oct 2007

Nanoindentation Of The A And C Domains In A Tetragonal Batio3 Single Crystal, Young-Bae Park, Matthew J. Dicken, Zhi-Hui Xu, Xiaodong Li

Faculty Publications

Nanoindentation in conjunction with piezoresponse force microscopy was used to study domain switching and to measure the mechanical properties of individual ferroelectric domains in a tetragonal BaTiO3 single crystal. It was found that nanoindentation has induced local domain switching; the a and c domains of BaTiO3 have different elastic moduli but similar hardness.Nanoindentationmodulus mapping on the a and c domains further confirmed such difference in elasticity. Finite element modeling was used to simulate the von Mises stress and plastic strain profiles of the indentations on both a and c domains, which introduces a much higher stress level than …


Top-Down Structure And Device Fabrication Using In Situ Nanomachining, Xiaodong Li, Xinnan Wang, Qihua Xiong, Peter C. Eklund Dec 2005

Top-Down Structure And Device Fabrication Using In Situ Nanomachining, Xiaodong Li, Xinnan Wang, Qihua Xiong, Peter C. Eklund

Faculty Publications

We demonstrate the potential of an alternative tool for the fabrication of nanoscale structures and devices. A nanoindenter integrated with an atomic force microscope is shown to be a powerful machine tool for cutting precise length nanowires or nanobelts and for manipulating the shortened wires. We also demonstrate its utility in cutting grooves and fabricating dents (or periodic arrays of dents) in ZnSnanobelts. This approach permits the direct mechanical machining of nanodevices that are supported on a substrate without the inherent complications of e beam or photolithography.


Mechanics Of Hydrogenated Amorphous Carbon Deposits From Electron-Beam-Induced Deposition Of Paraffin Precursor, W. Ding, D. A. Dikin, X. Chen, R. D. Piner, R. S. Ruoff, E. Zussman, X. Wang, Xiaodong Li Jul 2005

Mechanics Of Hydrogenated Amorphous Carbon Deposits From Electron-Beam-Induced Deposition Of Paraffin Precursor, W. Ding, D. A. Dikin, X. Chen, R. D. Piner, R. S. Ruoff, E. Zussman, X. Wang, Xiaodong Li

Faculty Publications

Many experiments on the mechanics of nanostructures require the creation of rigid clamps at specific locations. In this work, electron-beam-induced deposition(EBID) has been used to depositcarbonfilms that are similar to those that have recently been used for clamping nanostructures. The film deposition rate was accelerated by placing a paraffin source of hydrocarbon near the area where the EBIDdeposits were made. High-resolution transmission electron microscopy, electron-energy-loss spectroscopy, Raman spectroscopy, secondary-ion-mass spectrometry, and nanoindentation were used to characterize the chemical composition and the mechanics of the carbonaceous deposits. The typical EBIDdeposit was found to be hydrogenated amorphous carbon (a-C:H) having …


Nanomechanical Characterization Of Cavity Growth And Rupture In Hydrogen-Implanted Single-Crystal Batio3., Young-Bae Park, Patrick Nardi, Xiaodong Li, Harry A. Atwater Apr 2005

Nanomechanical Characterization Of Cavity Growth And Rupture In Hydrogen-Implanted Single-Crystal Batio3., Young-Bae Park, Patrick Nardi, Xiaodong Li, Harry A. Atwater

Faculty Publications

A thermodynamic model of cavitynucleation and growth in ion-implanted single-crystal BaTiO3 layer is proposed, and cavity formation is related to the measured mechanical properties to better understand hydrogen implantation-induced layer transfer processes for ferroelectric thin films. The critical radius for cavitynucleation was determined experimentally from blistering experiments performed under isochronal anneal conditions and was calculated using continuum mechanical models for deformation and fracture, together with thermodynamic models. Based on thermodynamic modeling, we suggest that cavitiesgrow toward the cracking criteria at a critical blister size whereupon gas is emitted from ruptured cavities. The main driving force for layer splitting is …


Nanofatigue Studies Of Ultrathin Hard Carbon Overcoats Used In Magnetic Storage Devices, Xiaodong Li, Bharat Bhushan May 2002

Nanofatigue Studies Of Ultrathin Hard Carbon Overcoats Used In Magnetic Storage Devices, Xiaodong Li, Bharat Bhushan

Faculty Publications

A technique to perform nanofatigue experiments was developed. This technique utilizes a depth-sensing nanoindenter with harmonic force. The nanofatigue behavior of 20 nm thick amorphous carbon coatings was studied. The contact stiffness was monitored continuously throughout the test. The abrupt decrease in the contact stiffness indicates fatigue damage has occurred. The critical load amplitude, below which no fatigue damage occurs, was identified. It was found that the filtered cathodic arc coating exhibits longer fatigue life than a direct ion beam coating. Failure mechanisms of the coatings during fatigue are also discussed in conjunction with the hardness,elastic modulus, and fracture toughness, …