Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Chemistry

The British University in Egypt

Fuel cells

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Effect Of The Electrodeposition Potential Of Platinum On The Catalytic Activity Of A Pt/Gc Catalyst Toward Formic Acid Electro−Oxidation, Islam M. Al-Akraa, Bilquis A. Al-Qodami Ms., Ahmad M. Mohammad Prof Jan 2020

Effect Of The Electrodeposition Potential Of Platinum On The Catalytic Activity Of A Pt/Gc Catalyst Toward Formic Acid Electro−Oxidation, Islam M. Al-Akraa, Bilquis A. Al-Qodami Ms., Ahmad M. Mohammad Prof

Chemical Engineering

The electrocatalytic activity of platinum (Pt)–modified glassy carbon (GC) (referred as Pt/GC) electrodes toward the formic acid electro−oxidation (FAO) was investigated. The Pt deposition on the GC substrate was carried out by a potentiostatic technique at different potentials (from 0.2 V to −0.2 V vs. Hg/Hg2Cl2/KCl (sat.) reference electrode) and the corresponding influence on the catalytic activity toward FAO was monitored. The electrocatalytic inspection revealed a potential role for the Pt deposition potential in boosting the catalytic efficiency of the catalyst toward FAO and further in mitigating the CO poisoning that eventually deactivate the catalyst. Interestingly, the highest activity toward …


A Promising Modification Of Pt Surfaces With Cnts For Decreasing Poisoning Impact In Direct Methanol Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Aya A. Khalifa Ms. Jan 2019

A Promising Modification Of Pt Surfaces With Cnts For Decreasing Poisoning Impact In Direct Methanol Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Aya A. Khalifa Ms.

Chemical Engineering

Direct methanol fuel cells (DMFCs) are clean energy sources that have many applications due to the high energy density of methanol as a fuel. However, this type of fuel cells (FCs) has limitations that are preventing it from being commercialized. One such limitation is the adsorption of intermediates such as CO into the surface of the Platinum (Pt) catalyst during methanol oxidation (MO) which deactivates its active sites, where the reaction is taking place, and leads to poisoning of the electrode over the long term. In this study, multi-walled carbon nanotubes (MWCNTs) have been introduced to the Pt-modified glassy carbon …


Enhanced Electro-Oxidation Of Methanol At Pt-Au Nanocatalyst For Direct Methanol Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Ahmad M. Mohammad Prof Jan 2019

Enhanced Electro-Oxidation Of Methanol At Pt-Au Nanocatalyst For Direct Methanol Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Ahmad M. Mohammad Prof

Chemical Engineering

In this investigation, a Pt-Au nanocatalyst prepared by the coelectrodeposition of Pt (PtNPs) and Au (AuNPs) nanoparticles is assembled onto a glassy carbon (GC) electrode for efficient methanol oxidation (MO). Several molar ratios between PtNPs and AuNPs have been used and the corresponding catalytic activity towards MO is tracked. The Pt1:Au1 catalyst showed the highest catalytic activity (5 times higher oxidation peak current (Ip) and a 126 mV negative shift in the onset potential (Eonset) toward MO). The catalyst’s morphology, composition and activity are investigated and the ehancement mechanism is recognized.


Fabrication Of Cuox-Pd Nanocatalyst Supported On A Glassy Carbon Electrode For Enhanced Formic Acid Electro-Oxidation, Islam M. Al-Akraa Dr., Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof Jan 2018

Fabrication Of Cuox-Pd Nanocatalyst Supported On A Glassy Carbon Electrode For Enhanced Formic Acid Electro-Oxidation, Islam M. Al-Akraa Dr., Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof

Chemical Engineering

Formic acid (FA) electro-oxidation (FAO) was investigated at a binary catalyst composed of palladium nanoparticles (PdNPs) and copper oxide nanowires (CuOxNWs) and assembled onto a glassy carbon (GC) electrode. /e deposition sequence of PdNPs and CuOxNWs was properly adjusted in such a way that could improve the electrocatalytic activity and stability of the electrode toward FAO. Several techniques including cyclic voltammetry, chronoamperometry, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction were all combined to report the catalyst’s activity and to evaluate its morphology, composition, and structure. /e highest catalytic activity and stability were obtained at the CuOx/Pd/GC …


On The Catalytic Activity Of Palladium Nanoparticles-Based Anodes Towards Formic Acid Electro-Oxidation: Effect Of Electrodeposition Potential, Islam M. Al-Akraa Dr., Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof Jan 2015

On The Catalytic Activity Of Palladium Nanoparticles-Based Anodes Towards Formic Acid Electro-Oxidation: Effect Of Electrodeposition Potential, Islam M. Al-Akraa Dr., Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof

Chemical Engineering

In this investigation, the catalytic activity of palladium nanoparticles (PdNPs)-modified glassy carbon (GC) (simply noted as PdNPs/GC) electrodes towards the formic acid electro-oxidation (FAO) was investigated. The deposition of PdNPs on the GC substrate was carried out by a potentiostatic technique at different potentials and the corresponding influence on the particles size and crystal structure of PdNPs as well as the catalytic activity towards FAO was studied. Scanning electron microscopy (SEM) demonstrated the deposition of PdNPs in spherical shapes and the average particle size of PdNPs deposited at a potential of 0 V vs. Ag/AgCl/KCl(sat.) was the smallest (ca. 8 …


Development Of Tailor-Designed Gold-Platinum Nanoparticles Binary Catalysts For Efficient Formic Acid Electrooxidation, Islam M. Al-Akraa Dr, Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof Jan 2012

Development Of Tailor-Designed Gold-Platinum Nanoparticles Binary Catalysts For Efficient Formic Acid Electrooxidation, Islam M. Al-Akraa Dr, Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof

Chemical Engineering

The modification of a glassy carbon (GC) electrode with platinum (PtNPs) and gold (AuNPs) nanoparticles is targeted to fabricate efficient anodes for the electrooxidation of formic acid (FA). A proper adjustment of the deposition sequence of PtNPs and AuNPs could eventually enhance the electrocatalytic activity of the electrode in such a way that suppresses the CO poisoning effect during FA oxidation. The highest catalytic activity is obtained at the Au/Pt/GC electrode (with PtNPs firstly deposited on the GC electrode followed by AuNPs). This superb enhancement is quantified by comparing the relative ratio of the direct vs. the indirect oxidation peaks …