Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics

Deep learning

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 117

Full-Text Articles in Engineering

Deep Learning Based Local Path Planning Method For Moving Robots, Zesen Liu, Sheng Bi, Chuanhong Guo, Yankui Wang, Min Dong May 2024

Deep Learning Based Local Path Planning Method For Moving Robots, Zesen Liu, Sheng Bi, Chuanhong Guo, Yankui Wang, Min Dong

Journal of System Simulation

Abstract: In order to integrate visual information into the robot navigation process, improve the robot's recognition rate of various types of obstacles, and reduce the occurrence of dangerous events, a local path planning network based on two-dimensional CNN and LSTM is designed, and a local path planning approach based on deep learning is proposed. The network uses the image from camera and the global path to generate the current steering angle required for obstacle avoidance and navigation. A simulated indoor scene is built for training and validating the network. A path evaluation method that uses the total length and the …


Toward Intuitive 3d Interactions In Virtual Reality: A Deep Learning- Based Dual-Hand Gesture Recognition Approach, Trudi Di Qi, Franceli L. Cibrian, Meghna Raswan, Tyler Kay, Hector M. Camarillo-Abad, Yuxin Wen May 2024

Toward Intuitive 3d Interactions In Virtual Reality: A Deep Learning- Based Dual-Hand Gesture Recognition Approach, Trudi Di Qi, Franceli L. Cibrian, Meghna Raswan, Tyler Kay, Hector M. Camarillo-Abad, Yuxin Wen

Engineering Faculty Articles and Research

Dual-hand gesture recognition is crucial for intuitive 3D interactions in virtual reality (VR), allowing the user to interact with virtual objects naturally through gestures using both handheld controllers. While deep learning and sensor-based technology have proven effective in recognizing single-hand gestures for 3D interactions, research on dual-hand gesture recognition for VR interactions is still underexplored. In this work, we introduce CWT-CNN-TCN, a novel deep learning model that combines a 2D Convolution Neural Network (CNN) with Continuous Wavelet Transformation (CWT) and a Temporal Convolution Network (TCN). This model can simultaneously extract features from the time-frequency domain and capture long-term dependencies using …


Next-Generation Crop Monitoring Technologies: Case Studies About Edge Image Processing For Crop Monitoring And Soil Water Property Modeling Via Above-Ground Sensors, Nipuna Chamara May 2024

Next-Generation Crop Monitoring Technologies: Case Studies About Edge Image Processing For Crop Monitoring And Soil Water Property Modeling Via Above-Ground Sensors, Nipuna Chamara

Dissertations and Doctoral Documents from University of Nebraska-Lincoln, 2023–

Artificial Intelligence (AI) has advanced rapidly in the past two decades. Internet of Things (IoT) technology has advanced rapidly during the last decade. Merging these two technologies has immense potential in several industries, including agriculture.

We have identified several research gaps in utilizing IoT technology in agriculture. One problem was the digital divide between rural, unconnected, or limited connected areas and urban areas for utilizing images for decision-making, which has advanced with the growth of AI. Another area for improvement was the farmers' demotivation to use in-situ soil moisture sensors for irrigation decision-making due to inherited installation difficulties. As Nebraska …


Incremental Image Dehazing Algorithm Based On Multiple Transfer Attention, Jinyang Wei, Keping Wang, Yi Yang, Shumin Fei Apr 2024

Incremental Image Dehazing Algorithm Based On Multiple Transfer Attention, Jinyang Wei, Keping Wang, Yi Yang, Shumin Fei

Journal of System Simulation

Abstract: In order to improve the processing ability of the depth-neural network dehazing algorithm to the supplementary data set, and to make the network differently process the image features of different importance to improve the dehazing ability of the network, an incremental dehazing algorithm based on multiple migration of attention is proposed. The teacher's attention generation network in the form of Encoder-Decoder extracts the multiple attention of labels and haze, which is used it as the label of the characteristic migration media network to constrain the network training to form the migration media attention as close as possible to the …


Expanding Analytical Capabilities In Intrusion Detection Through Ensemble-Based Multi-Label Classification, Ehsan Hallaji, Roozbeh Razavi-Far, Mehrdad Saif Apr 2024

Expanding Analytical Capabilities In Intrusion Detection Through Ensemble-Based Multi-Label Classification, Ehsan Hallaji, Roozbeh Razavi-Far, Mehrdad Saif

Electrical and Computer Engineering Publications

Intrusion detection systems are primarily designed to flag security breaches upon their occurrence. These systems operate under the assumption of single-label data, where each instance is assigned to a single category. However, when dealing with complex data, such as malware triage, the information provided by the IDS is limited. Consequently, additional analysis becomes necessary, leading to delays and incurring additional computational costs. Existing solutions to this problem typically merge these steps by considering a unified, but large, label set encompassing both intrusion and analytical labels, which adversely affects efficiency and performance. To address these challenges, this paper presents a novel …


Computational Modeling And Analysis Of Facial Expressions And Gaze For Discovery Of Candidate Behavioral Biomarkers For Children And Young Adults With Autism Spectrum Disorder, Megan Anita Witherow Apr 2024

Computational Modeling And Analysis Of Facial Expressions And Gaze For Discovery Of Candidate Behavioral Biomarkers For Children And Young Adults With Autism Spectrum Disorder, Megan Anita Witherow

Electrical & Computer Engineering Theses & Dissertations

Facial expression production and perception in autism spectrum disorder (ASD) suggest the potential presence of behavioral biomarkers that may stratify individuals on the spectrum into prognostic or treatment subgroups. High-speed internet and the ease of technology have enabled remote, scalable, affordable, and timely access to medical care, such as measurements of ASDrelated behaviors in familiar environments to complement clinical observation. Machine and deep learning (DL)-based analysis of video tracking (VT) of expression production and eye tracking (ET) of expression perception may aid stratification biomarker discovery for children and young adults with ASD. However, there are open challenges in 1) facial …


Action Recognition Model Of Directed Attention Based On Cosine Similarity, Chen Li, Ming He, Chen Dong, Wei Li Jan 2024

Action Recognition Model Of Directed Attention Based On Cosine Similarity, Chen Li, Ming He, Chen Dong, Wei Li

Journal of System Simulation

Abstract: Aiming at the lack of directionality of traditional dot product attention, this paper proposes a directed attention model (DAM) based on cosine similarity. To effectively represent the direction relationship between the spatial and temporal features of video frames, the paper defines the relationship function in the attention mechanism using the cosine similarity theory, which can remove the absolute value of the relationship between features. To reduce the computational burden of the attention mechanism, the operation is decomposed from two dimensions of time and space. The computational complexity is further optimized by combining linear attention operation. The experiment is divided …


A Memory Efficient Deep Recurrent Q-Learning Approach For Autonomous Wildfire Surveillance, Jeremy A. Cantor Jan 2024

A Memory Efficient Deep Recurrent Q-Learning Approach For Autonomous Wildfire Surveillance, Jeremy A. Cantor

UNF Graduate Theses and Dissertations

Previous literature demonstrates that autonomous UAVs (unmanned aerial vehicles) have the po- tential to be utilized for wildfire surveillance. This advanced technology empowers firefighters by providing them with critical information, thereby facilitating more informed decision-making processes. This thesis applies deep Q-learning techniques to the problem of control policy design under the objective that the UAVs collectively identify the maximum number of locations that are under fire, assuming the UAVs can share their observations. The prohibitively large state space underlying the control policy motivates a neural network approximation, but prior work used only convolutional layers to extract spatial fire information from …


Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso Jan 2024

Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso

Theses and Dissertations--Electrical and Computer Engineering

The emergence of deep learning models and their success in visual object recognition have fueled the medical imaging community's interest in integrating these algorithms to improve medical diagnosis. However, natural images, which have been the main focus of deep learning models and mammograms, exhibit fundamental differences. First, breast tissue abnormalities are often smaller than salient objects in natural images. Second, breast images have significantly higher resolutions but are generally heavily downsampled to fit these images to deep learning models. Models that handle high-resolution mammograms require many exams and complex architectures. Additionally, spatially resizing mammograms leads to losing discriminative details essential …


A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari Jan 2024

A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari

Computer Science Faculty Publications

Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental …


Sub-Band Backdoor Attack In Remote Sensing Imagery, Kazi Aminul Islam, Hongyi Wu, Chunsheng Xin, Rui Ning, Liuwan Zhu, Jiang Li Jan 2024

Sub-Band Backdoor Attack In Remote Sensing Imagery, Kazi Aminul Islam, Hongyi Wu, Chunsheng Xin, Rui Ning, Liuwan Zhu, Jiang Li

Electrical & Computer Engineering Faculty Publications

Remote sensing datasets usually have a wide range of spatial and spectral resolutions. They provide unique advantages in surveillance systems, and many government organizations use remote sensing multispectral imagery to monitor security-critical infrastructures or targets. Artificial Intelligence (AI) has advanced rapidly in recent years and has been widely applied to remote image analysis, achieving state-of-the-art (SOTA) performance. However, AI models are vulnerable and can be easily deceived or poisoned. A malicious user may poison an AI model by creating a stealthy backdoor. A backdoored AI model performs well on clean data but behaves abnormally when a planted trigger appears in …


Urban Flood Extent Segmentation And Evaluation From Real-World Surveillance Camera Images Using Deep Convolutional Neural Network, Yidi Wang, Yawen Shen, Behrouz Salahshour, Mecit Cetin, Khan Iftekharuddin, Navid Tahvildari, Guoping Huang, Devin K. Harris, Kwame Ampofo, Jonathan L. Goodall Jan 2024

Urban Flood Extent Segmentation And Evaluation From Real-World Surveillance Camera Images Using Deep Convolutional Neural Network, Yidi Wang, Yawen Shen, Behrouz Salahshour, Mecit Cetin, Khan Iftekharuddin, Navid Tahvildari, Guoping Huang, Devin K. Harris, Kwame Ampofo, Jonathan L. Goodall

Civil & Environmental Engineering Faculty Publications

This study explores the use of Deep Convolutional Neural Network (DCNN) for semantic segmentation of flood images. Imagery datasets of urban flooding were used to train two DCNN-based models, and camera images were used to test the application of the models with real-world data. Validation results show that both models extracted flood extent with a mean F1-score over 0.9. The factors that affected the performance included still water surface with specular reflection, wet road surface, and low illumination. In testing, reduced visibility during a storm and raindrops on surveillance cameras were major problems that affected the segmentation of flood extent. …


Physics-Informed Deep Learning With Kalman Filter Mixture For Traffic State Prediction, Niharika Deshpande, Hyoshin (John) Park Jan 2024

Physics-Informed Deep Learning With Kalman Filter Mixture For Traffic State Prediction, Niharika Deshpande, Hyoshin (John) Park

Engineering Management & Systems Engineering Faculty Publications

Accurate traffic forecasting is crucial for understanding and managing congestion for efficient transportation planning. However, conventional approaches often neglect epistemic uncertainty, which arises from incomplete knowledge across different spatiotemporal scales. This study addresses this challenge by introducing a novel methodology to establish dynamic spatiotemporal correlations that captures the unobserved heterogeneity in travel time through distinct peaks in probability density functions, guided by physics-based principles. We propose an innovative approach to modifying both prediction and correction steps of the Kalman Filter (KF) algorithm by leveraging established spatiotemporal correlations. Central to our approach is the development of a novel deep learning model …


Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii Oct 2023

Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, the field of machine learning (ML) has made significant advances, particularly through applying deep learning (DL) algorithms and artificial intelligence (AI). The literature shows several ways that ML may enhance the power of computational fluid dynamics (CFD) to improve its solution accuracy, reduce the needed computational resources and reduce overall simulation cost. ML techniques have also expanded the understanding of underlying flow physics and improved data capture from experimental fluid dynamics.

This dissertation presents an in-depth literature review and discusses ways the field of fluid dynamics has leveraged ML modeling to date. The author selects and describes …


Spoken Language Processing And Modeling For Aviation Communications, Aaron Van De Brook Oct 2023

Spoken Language Processing And Modeling For Aviation Communications, Aaron Van De Brook

Doctoral Dissertations and Master's Theses

With recent advances in machine learning and deep learning technologies and the creation of larger aviation-specific corpora, applying natural language processing technologies, especially those based on transformer neural networks, to aviation communications is becoming increasingly feasible. Previous work has focused on machine learning applications to natural language processing, such as N-grams and word lattices. This thesis experiments with a process for pretraining transformer-based language models on aviation English corpora and compare the effectiveness and performance of language models transfer learned from pretrained checkpoints and those trained from their base weight initializations (trained from scratch). The results suggest that transformer language …


Style Transfer Network For Generating Opera Makeup Details, Fengquan Zhang, Duo Cao, Xiaohan Ma, Baijun Chen, Jiangxiao Zhang Sep 2023

Style Transfer Network For Generating Opera Makeup Details, Fengquan Zhang, Duo Cao, Xiaohan Ma, Baijun Chen, Jiangxiao Zhang

Journal of System Simulation

Abstract: To address the problem of the loss of local style details in cross-domain image simulation, a ChinOperaGAN network framework suitable for opera makeup is designed from the perspective of protecting the excellent traditional culture. In order to solve the style translation of differences in two image domains, multiple overlapping local adversarial discriminators are proposed in the generative adversarial network. Since paired opera makeup data are difficult to obtain, a synthetic image is generated by combining the source image makeup mapping to effectively guide the transfer of local makeup details between images. In view of the characteristics of opera makeup …


Learning Deep Time-Index Models For Time Series Forecasting, Jiale Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, Steven Hoi Jul 2023

Learning Deep Time-Index Models For Time Series Forecasting, Jiale Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, Steven Hoi

Research Collection School Of Computing and Information Systems

Deep learning has been actively applied to time series forecasting, leading to a deluge of new methods, belonging to the class of historicalvalue models. Yet, despite the attractive properties of time-index models, such as being able to model the continuous nature of underlying time series dynamics, little attention has been given to them. Indeed, while naive deep timeindex models are far more expressive than the manually predefined function representations of classical time-index models, they are inadequate for forecasting, being unable to generalize to unseen time steps due to the lack of inductive bias. In this paper, we propose DeepTime, a …


Patient Movement Monitoring Based On Imu And Deep Learning, Mohsen Sharifi Renani Jun 2023

Patient Movement Monitoring Based On Imu And Deep Learning, Mohsen Sharifi Renani

Electronic Theses and Dissertations

Osteoarthritis (OA) is the leading cause of disability among the aging population in the United States and is frequently treated by replacing deteriorated joints with metal and plastic components. Developing better quantitative measures of movement quality to track patients longitudinally in their own homes would enable personalized treatment plans and hasten the advancement of promising new interventions. Wearable sensors and machine learning used to quantify patient movement could revolutionize the diagnosis and treatment of movement disorders. The purpose of this dissertation was to overcome technical challenges associated with the use of wearable sensors, specifically Inertial Measurement Units (IMUs), as a …


Wearable Sensor Gait Analysis For Fall Detection Using Deep Learning Methods, Haben Girmay Yhdego May 2023

Wearable Sensor Gait Analysis For Fall Detection Using Deep Learning Methods, Haben Girmay Yhdego

Electrical & Computer Engineering Theses & Dissertations

World Health Organization (WHO) data show that around 684,000 people die from falls yearly, making it the second-highest mortality rate after traffic accidents [1]. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. In light of the recent widespread adoption of wearable sensors, it has become increasingly critical that fall detection models are developed that can effectively process large and sequential sensor signal data. Several researchers have recently developed fall detection algorithms based on wearable sensor data. However, real-time fall detection remains challenging because of the wide …


Enhanced Iot-Based Electrocardiogram Monitoring System With Deep Learning, Jian Ni May 2023

Enhanced Iot-Based Electrocardiogram Monitoring System With Deep Learning, Jian Ni

UNLV Theses, Dissertations, Professional Papers, and Capstones

Due to the rapid development of computing and sensing technologies, Internet of Things (IoT)-based cardiac monitoring plays a crucial role in providing patients with cost-efficient solutions for long-term, continuous, and pervasive electrocardiogram (ECG) monitoring outside a hospital setting. In a typical IoT-based ECG monitoring system, ECG signals are picked up by sensors located on the edge, and then uploaded to the remote cloud servers. ECG interpretation is performed for the collected ECGs in the cloud servers and the analysis results can be made instantly available to the patients as well as their healthcare providers.In this dissertation, we first examine the …


Modulation Recognition Method Of Mixed Signal Based On Intelligent Analysis Of Cyclic Spectrum Section, Yu Du, Xinquan Yang, Jianhua Zhang, Suchun Yuan, Huachao Xiao, Jingjing Yuan Jan 2023

Modulation Recognition Method Of Mixed Signal Based On Intelligent Analysis Of Cyclic Spectrum Section, Yu Du, Xinquan Yang, Jianhua Zhang, Suchun Yuan, Huachao Xiao, Jingjing Yuan

Journal of System Simulation

Abstract: Aiming at the problems of low intelligence and poor adaptability for the existing mixed signal recognition methods, an intelligent recognition method based on cyclic spectral cross section and deep learning is proposed. For common mixed communication signals, the characteristics of zero frequency cross section of cyclic spectrum are theoretically deduced and analyzed. Two new pre-processing methods, nonlinear segmental mapping and directional pseudo-clustering are proposed, which can effectively improve the adaptability and consistency of cross section features. The pre-processed feature graph is combined with the residual network (ResNet), and the deep learning network is used to mine and analyze the …


Research On Intelligent Prediction Method Of Wargaming Air Mission, Dayong Zhang, Jingyu Yang, Xi Wu Jan 2023

Research On Intelligent Prediction Method Of Wargaming Air Mission, Dayong Zhang, Jingyu Yang, Xi Wu

Journal of System Simulation

Abstract: The efficient, accurate and automatic judgment of the combat mission or intention of the enemy's air targets in the battlefield is the basis of situation awareness and the key to the allocation of auxiliary combat resources. Combined with the calculation characteristics of feed forward deep neural network and long-term and short-term memory network model, two targeted basic index learners are designed, and then the weighted combination is carried out according to the cross entropy of the basic index, which can be used to further train the evaluation index of the learner. It can not only effectively prevent the model …


Adversarial Training Of Deep Neural Networks, Anabetsy Termini Jan 2023

Adversarial Training Of Deep Neural Networks, Anabetsy Termini

CCE Theses and Dissertations

Deep neural networks used for image classification are highly susceptible to adversarial attacks. The de facto method to increase adversarial robustness is to train neural networks with a mixture of adversarial images and unperturbed images. However, this method leads to robust overfitting, where the network primarily learns to recognize one specific type of attack used to generate the images while remaining vulnerable to others after training. In this dissertation, we performed a rigorous study to understand whether combinations of state of the art data augmentation methods with Stochastic Weight Averaging improve adversarial robustness and diminish adversarial overfitting across a wide …


View Synthesis With Scene Recognition For Cross-View Image Localization, Uddom Lee, Peng Jiang, Hongyi Wu, Chunsheng Xin Jan 2023

View Synthesis With Scene Recognition For Cross-View Image Localization, Uddom Lee, Peng Jiang, Hongyi Wu, Chunsheng Xin

Electrical & Computer Engineering Faculty Publications

Image-based localization has been widely used for autonomous vehicles, robotics, augmented reality, etc., and this is carried out by matching a query image taken from a cell phone or vehicle dashcam to a large scale of geo-tagged reference images, such as satellite/aerial images or Google Street Views. However, the problem remains challenging due to the inconsistency between the query images and the large-scale reference datasets regarding various light and weather conditions. To tackle this issue, this work proposes a novel view synthesis framework equipped with deep generative models, which can merge the unique features from the outdated reference dataset with …


Security Of Internet Of Things (Iot) Using Federated Learning And Deep Learning — Recent Advancements, Issues And Prospects, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty Jan 2023

Security Of Internet Of Things (Iot) Using Federated Learning And Deep Learning — Recent Advancements, Issues And Prospects, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty

Electrical & Computer Engineering Faculty Publications

There is a great demand for an efficient security framework which can secure IoT systems from potential adversarial attacks. However, it is challenging to design a suitable security model for IoT considering the dynamic and distributed nature of IoT. This motivates the researchers to focus more on investigating the role of machine learning (ML) in the designing of security models. A brief analysis of different ML algorithms for IoT security is discussed along with the advantages and limitations of ML algorithms. Existing studies state that ML algorithms suffer from the problem of high computational overhead and risk of privacy leakage. …


Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette Jan 2023

Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette

Electrical & Computer Engineering Faculty Publications

Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …


Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.) Jan 2023

Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.)

Electrical & Computer Engineering Faculty Publications

This work is a review and extension of our ongoing research in human recognition analysis using multimodality motion sensor data. We review our work on hand crafted feature engineering for motion capture skeleton (MoCap) data, from the Air Force Research Lab for human gender followed by depth scan based skeleton extraction using LIDAR data from the Army Night Vision Lab for person identification. We then build on these works to demonstrate a transfer learning sensor fusion approach for using the larger MoCap and smaller LIDAR data for gender classification.


Deep-Learning-Based Classification Of Digitally Modulated Signals Using Capsule Networks And Cyclic Cumulants, John A. Snoap, Dimitrie C. Popescu, James A. Latshaw, Chad M. Spooner Jan 2023

Deep-Learning-Based Classification Of Digitally Modulated Signals Using Capsule Networks And Cyclic Cumulants, John A. Snoap, Dimitrie C. Popescu, James A. Latshaw, Chad M. Spooner

Electrical & Computer Engineering Faculty Publications

This paper presents a novel deep-learning (DL)-based approach for classifying digitally modulated signals, which involves the use of capsule networks (CAPs) together with the cyclic cumulant (CC) features of the signals. These were blindly estimated using cyclostationary signal processing (CSP) and were then input into the CAP for training and classification. The classification performance and the generalization abilities of the proposed approach were tested using two distinct datasets that contained the same types of digitally modulated signals, but had distinct generation parameters. The results showed that the classification of digitally modulated signals using CAPs and CCs proposed in the paper …


A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen Jan 2023

A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The Internet of Things (IoT) has become more popular in the last 15 years as it has significantly improved and gained control in multiple fields. We are nowadays surrounded by billions of IoT devices that directly integrate with our lives, some of them are at the center of our homes, and others control sensitive data such as military fields, healthcare, and datacenters, among others. This popularity makes factories and companies compete to produce and develop many types of those devices without caring about how secure they are. On the other hand, IoT is considered a good insecure environment for cyber …


Cooperative Deep Q -Learning Framework For Environments Providing Image Feedback, Krishnan Raghavan, Vignesh Narayanan, Sarangapani Jagannathan Jan 2023

Cooperative Deep Q -Learning Framework For Environments Providing Image Feedback, Krishnan Raghavan, Vignesh Narayanan, Sarangapani Jagannathan

Publications

In this article, we address two key challenges in deep reinforcement learning (DRL) setting, sample inefficiency, and slow learning, with a dual-neural network (NN)-driven learning approach. In the proposed approach, we use two deep NNs with independent initialization to robustly approximate the action-value function in the presence of image inputs. In particular, we develop a temporal difference (TD) error-driven learning (EDL) approach, where we introduce a set of linear transformations of the TD error to directly update the parameters of each layer in the deep NN. We demonstrate theoretically that the cost minimized by the EDL regime is an approximation …