Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

A Modeling Framework For Urban Growth Prediction Using Remote Sensing And Video Prediction Technologies: A Time-Dependent Convolutional Encoder-Decoder Architecture, Ahmed Hassan Jaad Aug 2020

A Modeling Framework For Urban Growth Prediction Using Remote Sensing And Video Prediction Technologies: A Time-Dependent Convolutional Encoder-Decoder Architecture, Ahmed Hassan Jaad

Civil and Environmental Engineering Theses and Dissertations

Studying the growth pattern of cities/urban areas has received considerable attention during the past few decades. The goal is to identify directions and locations of potential growth, assess infrastructure and public service requirements, and ensure the integration of the new developments with the existing city structure. This dissertation presents a novel model for urban growth prediction using a novel machine learning model. The model treats successive historical satellite images of the urban area under consideration as a video for which future frames are predicted. A time-dependent convolutional encoder-decoder architecture is adopted. The model considers as an input a satellite ...


Big-Data Talent Analytics In The Public Sector: A Promotion And Firing Model Of Employees At Federal Agencies, Rabih Neouchi Oct 2019

Big-Data Talent Analytics In The Public Sector: A Promotion And Firing Model Of Employees At Federal Agencies, Rabih Neouchi

Engineering Management, Information, and Systems Research Theses and Dissertations

Talent analytics is a relatively new area of focus to researchers working in analytics and data science. Talent Analytics has the potential to help companies make many informed critical decisions around talent acquisition, promotion and retention. This work investigates data science to predict “shiny star” employees in the U.S. public sector, defined as top-notch performers over the years of a given time span. Its scope falls within talent analytics, also called people analytics, a relatively new research area.

We clean a data set made available by the U.S. Office of Personnel Management (OPM) and present two models to ...


Self-Driving Cars: Evaluation Of Deep Learning Techniques For Object Detection In Different Driving Conditions, Ramesh Simhambhatla, Kevin Okiah, Shravan Kuchkula, Robert Slater May 2019

Self-Driving Cars: Evaluation Of Deep Learning Techniques For Object Detection In Different Driving Conditions, Ramesh Simhambhatla, Kevin Okiah, Shravan Kuchkula, Robert Slater

SMU Data Science Review

Deep Learning has revolutionized Computer Vision, and it is the core technology behind capabilities of a self-driving car. Convolutional Neural Networks (CNNs) are at the heart of this deep learning revolution for improving the task of object detection. A number of successful object detection systems have been proposed in recent years that are based on CNNs. In this paper, an empirical evaluation of three recent meta-architectures: SSD (Single Shot multi-box Detector), R-CNN (Region-based CNN) and R-FCN (Region-based Fully Convolutional Networks) was conducted to measure how fast and accurate they are in identifying objects on the road, such as vehicles, pedestrians ...


Comparative Study Of Sentiment Analysis With Product Reviews Using Machine Learning And Lexicon-Based Approaches, Heidi Nguyen, Aravind Veluchamy, Mamadou Diop, Rashed Iqbal Jan 2019

Comparative Study Of Sentiment Analysis With Product Reviews Using Machine Learning And Lexicon-Based Approaches, Heidi Nguyen, Aravind Veluchamy, Mamadou Diop, Rashed Iqbal

SMU Data Science Review

In this paper, we present a comparative study of text sentiment classification models using term frequency inverse document frequency vectorization in both supervised machine learning and lexicon-based techniques. There have been multiple promising machine learning and lexicon-based techniques, but the relative goodness of each approach on specific types of problems is not well understood. In order to offer researchers comprehensive insights, we compare a total of six algorithms to each other. The three machine learning algorithms are: Logistic Regression (LR), Support Vector Machine (SVM), and Gradient Boosting. The three lexicon-based algorithms are: Valence Aware Dictionary and Sentiment Reasoner (VADER), Pattern ...


Improving Vix Futures Forecasts Using Machine Learning Methods, James Hosker, Slobodan Djurdjevic, Hieu Nguyen, Robert Slater Jan 2019

Improving Vix Futures Forecasts Using Machine Learning Methods, James Hosker, Slobodan Djurdjevic, Hieu Nguyen, Robert Slater

SMU Data Science Review

The problem of forecasting market volatility is a difficult task for most fund managers. Volatility forecasts are used for risk management, alpha (risk) trading, and the reduction of trading friction. Improving the forecasts of future market volatility assists fund managers in adding or reducing risk in their portfolios as well as in increasing hedges to protect their portfolios in anticipation of a market sell-off event. Our analysis compares three existing financial models that forecast future market volatility using the Chicago Board Options Exchange Volatility Index (VIX) to six machine/deep learning supervised regression methods. This analysis determines which models provide ...


Improving Gas Well Economics With Intelligent Plunger Lift Optimization Techniques, Atsu Atakpa, Emmanuel Farrugia, Ryan Tyree, Daniel W. Engels, Charles Sparks Jan 2019

Improving Gas Well Economics With Intelligent Plunger Lift Optimization Techniques, Atsu Atakpa, Emmanuel Farrugia, Ryan Tyree, Daniel W. Engels, Charles Sparks

SMU Data Science Review

In this paper, we present an approach to reducing bottom hole plunger dwell time for artificial lift systems. Lift systems are used in a process to remove contaminants from a natural gas well. A plunger is a mechanical device used to deliquefy natural gas wells by removing contaminants in the form of water, oil, wax, and sand from the wellbore. These contaminants decrease bottom-hole pressure which in turn hampers gas production by forming a physical barrier within the well tubing. As the plunger descends through the well it emits sounds which are recorded at the surface by an echo-meter that ...


Comparative Study Of Deep Learning Models For Network Intrusion Detection, Brian Lee, Sandhya Amaresh, Clifford Green, Daniel Engels Apr 2018

Comparative Study Of Deep Learning Models For Network Intrusion Detection, Brian Lee, Sandhya Amaresh, Clifford Green, Daniel Engels

SMU Data Science Review

In this paper, we present a comparative evaluation of deep learning approaches to network intrusion detection. A Network Intrusion Detection System (NIDS) is a critical component of every Internet connected system due to likely attacks from both external and internal sources. A NIDS is used to detect network born attacks such as Denial of Service (DoS) attacks, malware replication, and intruders that are operating within the system. Multiple deep learning approaches have been proposed for intrusion detection systems. We evaluate three models, a vanilla deep neural net (DNN), self-taught learning (STL) approach, and Recurrent Neural Network (RNN) based Long Short ...


Near-Optimal Control Of Switched Systems With Continuous-Time Dynamics Using Approximate Dynamic Programming, Tohid Sardarmehni Apr 2018

Near-Optimal Control Of Switched Systems With Continuous-Time Dynamics Using Approximate Dynamic Programming, Tohid Sardarmehni

Mechanical Engineering Research Theses and Dissertations

Optimal control is a control method which provides inputs that minimize a performance index subject to state or input constraints [58]. The existing solutions for finding the exact optimal control solution such as Pontryagin’s minimum principle and dynamic programming suffer from curse of dimensionality in high order dynamical systems. One remedy for this problem is finding near optimal solution instead of the exact optimal solution to avoid curse of dimensionality [31]. A method for finding the approximate optimal solution is through Approximate Dynamic Programming (ADP) methods which are discussed in the subsequent chapters.

In this dissertation, optimal switching in ...