Open Access. Powered by Scholars. Published by Universities.®

Business Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

Engineering

#afcec

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Business

Improving Data-Driven Infrastructure Degradation Forecast Skill With Stepwise Asset Condition Prediction Models, Kurt R. Lamm, Justin D. Delorit, Michael N. Grussing, Steven J. Schuldt Aug 2022

Improving Data-Driven Infrastructure Degradation Forecast Skill With Stepwise Asset Condition Prediction Models, Kurt R. Lamm, Justin D. Delorit, Michael N. Grussing, Steven J. Schuldt

Faculty Publications

Organizations with large facility and infrastructure portfolios have used asset management databases for over ten years to collect and standardize asset condition data. Decision makers use these data to predict asset degradation and expected service life, enabling prioritized maintenance, repair, and renovation actions that reduce asset life-cycle costs and achieve organizational objectives. However, these asset condition forecasts are calculated using standardized, self-correcting distribution models that rely on poorly-fit, continuous functions. This research presents four stepwise asset condition forecast models that utilize historical asset inspection data to improve prediction accuracy: (1) Slope, (2) Weighted Slope, (3) Condition-Intelligent Weighted Slope, and (4) …


Prioritizing Facilities Linked To Corporate Strategic Objectives Using A Fuzzy Model, Devin Depalmer, Steven J. Schuldt, Justin D. Delorit Jun 2021

Prioritizing Facilities Linked To Corporate Strategic Objectives Using A Fuzzy Model, Devin Depalmer, Steven J. Schuldt, Justin D. Delorit

Faculty Publications

Excerpt: Limited facilities operating and modernization budgets require organizations to carefully identify, prioritize and authorize projects to ensure allocated resources align with strategic objectives. Traditional facility prioritization methods using risk matrices can be improved to increase granularity in categorization and avoid mathematical error or human cognitive biases. These limitations restrict the utility of prioritizations and if erroneously used to select projects for funding, they can lead to wasted resources. This paper aims to propose a novel facility prioritization methodology that corrects these assessment design and implementation issues.