Open Access. Powered by Scholars. Published by Universities.®

Business Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Selected Works

Critical Infrastructure Assurance

Articles 1 - 9 of 9

Full-Text Articles in Business

Testimony Before The House Committee On National Security And The House Committee On Oversight And Government Reform, George H. Baker Iii May 2015

Testimony Before The House Committee On National Security And The House Committee On Oversight And Government Reform, George H. Baker Iii

George H Baker

The Commission to Assess the threat to the United States from Electromagnetic Pulse, on which I served as principal staff, made a compelling case for protecting critical infrastructure against the nuclear electromagnetic pulse (EMP) and geomagnetic disturbances (GMD) caused by severe solar storms. Their 2008 Critical Infrastructure Report explains EMP effects, consequences, and protection means for critical infrastructure sectors. EMP and GMD are particularly challenging in that they interfere with electrical power and electronic data, control, transmission, and communication systems organic to nearly all critical infrastructures. The affected geography may be continental in scale. EMP and GMD events thus represent …


Emp And Geomagnetic Storm Protection Of Critical Infrastructure, George H. Baker Iii May 2012

Emp And Geomagnetic Storm Protection Of Critical Infrastructure, George H. Baker Iii

George H Baker

EMP and solar storm wide geographic coverage and ubiquitous system effects beg the question of “Where to begin?” with protection efforts. Thus, in addressing these “wide area electromagnetic (EM) effects,” we must be clever in deciding where to invest limited resources. Based on simple risk analysis, the electric power and communication infrastructures emerge as the highest priority for EM protection. Programs focused on these highest risk infrastructures will go a long way in lessoning societal impact. Given the national scope of the effects, such programs must be coordinated at the national level but implemented at local level. Because wide-area EM …


Risk-Based Critical Infrastructure Priorities For Emp And Solar Storms, George H. Baker Iii Oct 2011

Risk-Based Critical Infrastructure Priorities For Emp And Solar Storms, George H. Baker Iii

George H Baker

Two electromagnetic phenomena have the potential to create continental-scale disasters. The first, nuclear electromagnetic pulse (EMP), results from a nuclear detonation high above the tropopause. The second, a major solar storm, or "solar tsunami" occurs naturally when an intense wave of charged particles from the sun perturbs the earth's magnetic field. Both phenomena can debilitate electrical and electronic systems necessary for the operation of infrastructure systems and services. One reason why a U.S. protection program has yet to be initiated is that policy makers continue to wrestle with the question of where to begin, given the Department of Homeland Security’s …


Risk-Based Critical Infrastructure Protection Priorities For Emp And Solar Storms, George H. Baker Iii Sep 2011

Risk-Based Critical Infrastructure Protection Priorities For Emp And Solar Storms, George H. Baker Iii

George H Baker

The Commission to Assess the Threat to the United States from Electromagnetic Pulse Attack has provided a compelling case for protecting civilian infrastructure against the effects of EMP. As with protecting infrastructure against any hazard, it will be important to take a risk-based priority approach for EMP, recognizing that it is fiscally impracticable to protect everything. In this regard, EMP is particularly challenging in that it interferes with electrical and electronic data, control, transmission, and communication systems organic to nearly all infrastructures in a simultaneous and wide-scale manner. And, for nuclear burst altitudes of 100s of kilometers, the exposed geography …


Proceedings Of The 2009 Nrc Federal Facilities Council/James Madison University Symposium On Protecting Large Facility Complexes;, George H. Baker, Cheryl E. Wilkins Apr 2010

Proceedings Of The 2009 Nrc Federal Facilities Council/James Madison University Symposium On Protecting Large Facility Complexes;, George H. Baker, Cheryl E. Wilkins

George H Baker

Large, complex facilities pose unique protection challenges involving multidisciplinary expertise and collaboration among government, academia, and the private sector. The symposium served as a forum for sharing experiences in dealing with large facility catastrophic events and risk management. The symposium was organized based on the value of interaction among different people representing diverse disciplines. In many instances, such interactions lead to solutions that would not have been developed within disciplinary stovepipes. The venue was divided into three panels addressing physical security, cyber security, and real facility case studies. We were also privileged to have three keynote speakers including Dr. Charles …


Homeland Security: Fostering Public-Private Partnerships, George H. Baker, Cheryl J. Elliott Dec 2008

Homeland Security: Fostering Public-Private Partnerships, George H. Baker, Cheryl J. Elliott

George H Baker

Recent U.S. high consequence events have clarified the importance of government collaboration with industry. The benefit of such collaboration was one of the most important lessons learned from Hurricane Katrina. The resources owned and controlled by American industry dwarf those available to local, state and even the federal government departments. Better agreements and incentives to bring the full capabilities of industry squarely into the national response agenda will be indispensable in effectively responding to large-scale catastrophes. At our 2007 Symposium, General Russel Honoré, who led the National Guard response to Katrina stated, “We need the partnering between local, state, and …


Cascading Infrastructure Failures: Avoidance And Response, George H. Baker, Cheryl J. Elliott Dec 2007

Cascading Infrastructure Failures: Avoidance And Response, George H. Baker, Cheryl J. Elliott

George H Baker

No critical infrastructure is self-sufficient. The complexity inherent in the interdependent nature of infrastructure systems complicates planning and preparedness for system failures. Recent wide-scale disruption of infrastructure on the Gulf Coast due to weather, and in the Northeast due to electric power network failures, dramatically illustrate the problems associated with mitigating cascading effects and responding to cascading infrastructure failures once they have occurred.

The major challenge associated with preparedness for cascading failures is that they transcend system, corporate, and political boundaries and necessitate coordination among multiple, disparate experts and authorities. This symposium brought together concerned communities including government and industry …


Homeland Security: Engaging The Frontlines - Symposium Proceedings, George H. Baker, Cheryl J. Elliott Apr 2006

Homeland Security: Engaging The Frontlines - Symposium Proceedings, George H. Baker, Cheryl J. Elliott

George H Baker

The rise of the American homeland security endeavor under the leadership of the new Department of Homeland Security has been heralded by several major national strategy documents. These documents have served to organize efforts at top levels within the government and industry. However, the national strategy guidance is not getting to many organizations and people at the grass-roots level who can make the most difference in preventing attacks, protecting systems, and recovering from catastrophic events, viz. the general citizenry, private infrastructure owners, and local governments. To better understand grass-roots issues and solutions, James Madison University, in cooperation with the Federal …


Mil-Std-188-125-2, High-Altitude Emp Protection For Transportable Systems Mar 1999

Mil-Std-188-125-2, High-Altitude Emp Protection For Transportable Systems

George H Baker

This standard establishes minimum requirements and design objectives for high-altitude electromagnetic pulse (HEMP) hardening of transportable1 ground-based systems that perform critical, time-urgent command, control, communications, computer, and intelligence (C4I) missions. Systems required to fully comply with the provisions of the standard will be designated by the Joint Chiefs of Staff, a Military Department Headquarters, or a Major Command.

The standard prescribes minimum performance requirements for low-risk protection from mission-aborting damage or upset due to HEMP threat environments. The standard also addresses minimum testing requirements for demonstrating that prescribed performance has been achieved and for verifying that the installed protection measures …