Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Marquette University

2017

3D printing

Articles 1 - 1 of 1

Full-Text Articles in Entire DC Network

3d Printed Tcp-Based Scaffold Incorporating Vegf-Loaded Plga Microspheres For Craniofacial Tissue Engineering, Farahnaz Fahimipour, Morteza Rasoulianboroujeni, Erfan Dashtimoghadam, Kimia Khoshroo, Mohammadreza Tahriri, Doug Lobner, Lobat Tayebi Nov 2017

3d Printed Tcp-Based Scaffold Incorporating Vegf-Loaded Plga Microspheres For Craniofacial Tissue Engineering, Farahnaz Fahimipour, Morteza Rasoulianboroujeni, Erfan Dashtimoghadam, Kimia Khoshroo, Mohammadreza Tahriri, Doug Lobner, Lobat Tayebi

School of Dentistry Faculty Research and Publications

Objective

Vascularization is a critical process during bone regeneration/repair and the lack of tissue vascularization is recognized as a major challenge in applying bone tissue engineeringmethods for cranial and maxillofacial surgeries. The aim of our study is to fabricate a vascular endothelial growth factor (VEGF)-loaded gelatin/alginate/β-TCP composite scaffold by 3D printing method using a computer-assisted design (CAD) model.

Methods

The paste, composed of (VEGF-loaded PLGA)-containing gelatin/alginate/β-TCP in water, was loaded into standard Nordson cartridges and promptly employed for printing the scaffolds. Rheological characterization of various gelatin/alginate/β-TCP formulations led to an optimized paste as a printable bioink at room …