Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Differential Expression Of The Toxr Regulon In Classical And E1 Tor Biotypes Of Vibrio Cholerae Is Due To Biotype-Specific Control Over Toxt Expression., Victor J. Dirita, Melody Neely, Ronald K. Taylor, Paul M. Bruss Jul 1996

Differential Expression Of The Toxr Regulon In Classical And E1 Tor Biotypes Of Vibrio Cholerae Is Due To Biotype-Specific Control Over Toxt Expression., Victor J. Dirita, Melody Neely, Ronald K. Taylor, Paul M. Bruss

Dartmouth Scholarship

The two major disease-causing biotypes of Vibrio cholerae, classical and El Tor, exhibit differences in their epidemic nature. Their behavior in the laboratory also differs in that El Tor strains produce two major virulence factors, cholera toxin (CT) and the toxin coregulated pilus (TCP), only under very restricted growth conditions, whereas classical strains do so in standard laboratory medium. Expression of toxin and TCP is controlled by two activator proteins, ToxR and ToxT, that operate in cascade fashion with ToxR controlling the synthesis of ToxT. Both biotypes express equivalent levels of ToxR, but only classical strains appear to express ToxT …


A Novel Iron-Regulated Metal Transporter From Plants Identified By Functional Expression In Yeast., David Eide, Margaret Broderius, Jeanette Fett, Mary Lou Guerinot May 1996

A Novel Iron-Regulated Metal Transporter From Plants Identified By Functional Expression In Yeast., David Eide, Margaret Broderius, Jeanette Fett, Mary Lou Guerinot

Dartmouth Scholarship

Iron is an essential nutrient for virtually all organisms. The IRT1 (iron-regulated transporter) gene of the plant Arabidopsis thaliana, encoding a probable Fe(II) transporter, was cloned by functional expression in a yeast strain defective for iron uptake. Yeast expressing IRT1 possess a novel Fe(II) uptake activity that is strongly inhibited by Cd. IRT1 is predicted to be an integral membrane protein with a metal-binding domain. Data base comparisons and Southern blot analysis indicated that IRT1 is a member of a gene family in Arabidopsis. Related sequences were also found in the genomes of rice, yeast, nematodes, and humans. In Arabidopsis, …