Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Watershed Response To Climate Change And Fire-Burns In The Upper Umatilla River Basin Using The Precipitation Runoff Modeling System, Kimberly Crystal Yazzie Aug 2016

Watershed Response To Climate Change And Fire-Burns In The Upper Umatilla River Basin Using The Precipitation Runoff Modeling System, Kimberly Crystal Yazzie

Dissertations and Theses

This study provides an analysis of watershed response to climate change and forest fire impacts, to better understand the hydrologic budget and inform water management decisions for present and future needs. The study site is 2,365 km2, located in the upper Umatilla River Basin (URB) in northeastern Oregon. The Precipitation Runoff Modeling System, a distributed-parameter, physical-process watershed model, was used in this study. Model calibration yielded a Nash Sutcliffe Model Efficiency of 0.73 for both calibration (1995-2010) and validation (2010-2014) of daily streamflow. Ten Global Climate Models using Coupled Model Intercomparison Project Phase 5 experiments with Representative Concentration …


Multiple New-Particle Growth Pathways Observed At The Us Doe Southern Great Plains Field Site, Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. Mcmurry, James N. Smith, Jeffery R. Pierce Jul 2016

Multiple New-Particle Growth Pathways Observed At The Us Doe Southern Great Plains Field Site, Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. Mcmurry, James N. Smith, Jeffery R. Pierce

Civil and Environmental Engineering Faculty Publications and Presentations

New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low volatility species, from diameters ∼ 1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids …


How Landscape Ecology Informs Global Land-Change Science And Policy, Audrey L. Mayer, Brian Buma, Amélie Davis, Sara A. Gagné, E. Louise Loudermilk, Robert M. Scheller, Fiona K.A. Schmiegelow, Fiona Majorin, Yolanda F. Wiersma, Janet Franklin Apr 2016

How Landscape Ecology Informs Global Land-Change Science And Policy, Audrey L. Mayer, Brian Buma, Amélie Davis, Sara A. Gagné, E. Louise Loudermilk, Robert M. Scheller, Fiona K.A. Schmiegelow, Fiona Majorin, Yolanda F. Wiersma, Janet Franklin

Environmental Science and Management Faculty Publications and Presentations

Landscape ecology is a discipline that explicitly considers the influence of time and space on the environmental patterns we observe and the processes that create them. Although many of the topics studied in landscape ecology have public policy implications, three are of particular concern: climate change; land use–land cover change (LULCC); and a particular type of LULCC, urbanization. These processes are interrelated, because LULCC is driven by both human activities (e.g., agricultural expansion and urban sprawl) and climate change (e.g., desertification). Climate change, in turn, will affect the way humans use landscapes. Interactions among these drivers of ecosystem change can …


Carbon Sequestration In Managed Temperate Coniferous Forests Under Climate Change, Caren C. Dymond, Sarah Beukema, Craig R. Nitschke, K. David Coates, Robert M. Scheller Mar 2016

Carbon Sequestration In Managed Temperate Coniferous Forests Under Climate Change, Caren C. Dymond, Sarah Beukema, Craig R. Nitschke, K. David Coates, Robert M. Scheller

Environmental Science and Management Faculty Publications and Presentations

Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper–Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under …