Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

External Link

Celia A. Schiffer

Selected Works

Discipline
Keyword
Publication Year

Articles 1 - 30 of 60

Full-Text Articles in Entire DC Network

Positive Selection Drives Preferred Segment Combinations During Influenza Virus Reassortment, Konstantin Zeldovich, Ping Liu, Nicholas Renzette, Matthieu Foll, Serena Pham, Sergey Venev, Glen Gallagher, Daniel Bolon, Evelyn Kurt-Jones, Jeffrey Jensen, Daniel Caffrey, Celia Schiffer, Timothy Kowalik, Jennifer Wang, Robert Finberg Jun 2015

Positive Selection Drives Preferred Segment Combinations During Influenza Virus Reassortment, Konstantin Zeldovich, Ping Liu, Nicholas Renzette, Matthieu Foll, Serena Pham, Sergey Venev, Glen Gallagher, Daniel Bolon, Evelyn Kurt-Jones, Jeffrey Jensen, Daniel Caffrey, Celia Schiffer, Timothy Kowalik, Jennifer Wang, Robert Finberg

Celia A. Schiffer

Influenza A virus (IAV) has a segmented genome that allows for the exchange of genome segments between different strains. This reassortment accelerates evolution by breaking linkage, helping IAV cross species barriers to potentially create highly virulent strains. Challenges associated with monitoring the process of reassortment in molecular detail have limited our understanding of its evolutionary implications. We applied a novel deep sequencing approach with quantitative analysis to assess the in vitro temporal evolution of genomic reassortment in IAV. The combination of H1N1 and H3N2 strains reproducibly generated a new H1N2 strain with the hemagglutinin and nucleoprotein segments originating from H1N1 …


Structure-Guided Design Of A High Affinity Inhibitor To Human Ctbp, Brendan Hilbert, Benjamin Morris, Keith Ellis, Janet Paulsen, Celia Schiffer, Steven Grossman, William Royer May 2015

Structure-Guided Design Of A High Affinity Inhibitor To Human Ctbp, Brendan Hilbert, Benjamin Morris, Keith Ellis, Janet Paulsen, Celia Schiffer, Steven Grossman, William Royer

Celia A. Schiffer

Oncogenic transcriptional coregulators C-terminal Binding Protein (CtBP) 1 and 2 possess regulatory d-isomer specific 2-hydroxyacid dehydrogenase (D2-HDH) domains that provide an attractive target for small molecule intervention. Findings that the CtBP substrate 4-methylthio 2-oxobutyric acid (MTOB) can interfere with CtBP oncogenic activity in cell culture and in mice confirm that such inhibitors could have therapeutic benefit. Recent crystal structures of CtBP 1 and 2 revealed that MTOB binds in an active site containing a dominant tryptophan and a hydrophilic cavity, neither of which are present in other D2-HDH family members. Here, we demonstrate the effectiveness of exploiting these active site …


Drug-Resistant Hiv-1 Protease Regains Functional Dynamics Through Cleavage Site Coevolution, Nevra Ozer, Aysegul Ozen, Celia Schiffer, Turkan Haliloglu May 2015

Drug-Resistant Hiv-1 Protease Regains Functional Dynamics Through Cleavage Site Coevolution, Nevra Ozer, Aysegul Ozen, Celia Schiffer, Turkan Haliloglu

Celia A. Schiffer

Drug resistance is caused by mutations that change the balance of recognition favoring substrate cleavage over inhibitor binding. Here, a structural dynamics perspective of the regained wild-type functioning in mutant HIV-1 proteases with coevolution of the natural substrates is provided. The collective dynamics of mutant structures of the protease bound to p1-p6 and NC-p1 substrates are assessed using the Anisotropic Network Model (ANM). The drug-induced protease mutations perturb the mechanistically crucial hinge axes that involve key sites for substrate binding and dimerization and mainly coordinate the intrinsic dynamics. Yet with substrate coevolution, while the wild-type dynamic behavior is restored in …


A Sensitive Assay Using A Native Protein Substrate For Screening Hiv-1 Maturation Inhibitors Targeting The Protease Cleavage Site Between The Matrix And Capsid, Sook-Kyung Lee, Nancy Cheng, Emily Hull-Ryde, Marc Potempa, Celia Schiffer, William Janzen, Ronald Swanstrom Jan 2015

A Sensitive Assay Using A Native Protein Substrate For Screening Hiv-1 Maturation Inhibitors Targeting The Protease Cleavage Site Between The Matrix And Capsid, Sook-Kyung Lee, Nancy Cheng, Emily Hull-Ryde, Marc Potempa, Celia Schiffer, William Janzen, Ronald Swanstrom

Celia A. Schiffer

The matrix/capsid processing site in the HIV-1 Gag precursor is likely the most sensitive target to inhibit HIV-1 replication. We have previously shown that modest incomplete processing at the site leads to a complete loss of virion infectivity. In the study presented here, a sensitive assay based on fluorescence polarization that can monitor cleavage at the MA/CA site in the context of the folded protein substrate is described. The substrate, an MA/CA fusion protein, was labeled with the fluorescein-based FlAsH (fluorescein arsenical hairpin) reagent that binds to a tetracysteine motif (CCGPCC) that was introduced within the N-terminal domain of CA. …


Efficient Computation Of Small-Molecule Configurational Binding Entropy And Free Energy Changes By Ensemble Enumeration, Nathaniel Silver, Bracken King, Madhavi Nalam, Hong Cao, Akbar Ali, G. S. Kiran Kumar Reddy, Tariq Rana, Celia Schiffer, Bruce Tidor Jan 2015

Efficient Computation Of Small-Molecule Configurational Binding Entropy And Free Energy Changes By Ensemble Enumeration, Nathaniel Silver, Bracken King, Madhavi Nalam, Hong Cao, Akbar Ali, G. S. Kiran Kumar Reddy, Tariq Rana, Celia Schiffer, Bruce Tidor

Celia A. Schiffer

Here we present a novel, end-point method using the dead-end-elimination and A* algorithms to efficiently and accurately calculate the change in free energy, enthalpy, and configurational entropy of binding for ligand-receptor association reactions. We apply the new approach to the binding of a series of human immunodeficiency virus (HIV-1) protease inhibitors to examine the effect ensemble reranking has on relative accuracy as well as to evaluate the role of the absolute and relative ligand configurational entropy losses upon binding in affinity differences for structurally related inhibitors. Our results suggest that most thermodynamic parameters can be estimated using only a small …


Drug Resistance Conferred By Mutations Outside The Active Site Through Alterations In The Dynamic And Structural Ensemble Of Hiv-1 Protease, Debra Ragland, Ellen Nalivaika, Madhavi Nalam, Kristina Prachanronarong, Hong Cao, Rajintha Bandaranayake, Yufeng Cai, Nese Yilmaz, Celia Schiffer Jan 2015

Drug Resistance Conferred By Mutations Outside The Active Site Through Alterations In The Dynamic And Structural Ensemble Of Hiv-1 Protease, Debra Ragland, Ellen Nalivaika, Madhavi Nalam, Kristina Prachanronarong, Hong Cao, Rajintha Bandaranayake, Yufeng Cai, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

HIV-1 protease inhibitors are part of the highly active antiretroviral therapy effectively used in the treatment of HIV infection and AIDS. Darunavir (DRV) is the most potent of these inhibitors, soliciting drug resistance only when a complex combination of mutations occur both inside and outside the protease active site. With few exceptions, the role of mutations outside the active site in conferring resistance remains largely elusive. Through a series of DRV-protease complex crystal structures, inhibition assays, and molecular dynamics simulations, we find that single and double site mutations outside the active site often associated with DRV resistance alter the structure …


Testing The Substrate-Envelope Hypothesis With Designed Pairs Of Compounds, Yang Shen, Michael Altman, Akbar Ali, Madhavi Nalam, Hong Cao, Tariq Rana, Celia Schiffer, Bruce Tidor Jan 2015

Testing The Substrate-Envelope Hypothesis With Designed Pairs Of Compounds, Yang Shen, Michael Altman, Akbar Ali, Madhavi Nalam, Hong Cao, Tariq Rana, Celia Schiffer, Bruce Tidor

Celia A. Schiffer

Acquired resistance to therapeutic agents is a significant barrier to the development of clinically effective treatments for diseases in which evolution occurs on clinical time scales, frequently arising from target mutations. We previously reported a general strategy to design effective inhibitors for rapidly mutating enzyme targets, which we demonstrated for HIV-1 protease inhibition [Altman et al. J. Am. Chem. Soc. 2008, 130, 6099-6113]. Specifically, we developed a computational inverse design procedure with the added constraint that designed inhibitors bind entirely inside the substrate envelope, a consensus volume occupied by natural substrates. The rationale for the substrate-envelope constraint is that it …


Development Of A Novel Screening Strategy Designed To Discover A New Class Of Hiv Drugs, Nancy Cheng, Sook-Kyung Lee, P. Donover, Mel Reichman, Celia Schiffer, Emily Hull-Ryde, Ronald Swanstrom, William Janzen Jan 2015

Development Of A Novel Screening Strategy Designed To Discover A New Class Of Hiv Drugs, Nancy Cheng, Sook-Kyung Lee, P. Donover, Mel Reichman, Celia Schiffer, Emily Hull-Ryde, Ronald Swanstrom, William Janzen

Celia A. Schiffer

Current antiretroviral treatments target multiple pathways important for human immunodeficiency virus (HIV) multiplication, including viral entry, synthesis and integration of the DNA provirus, and the processing of viral polyprotein precursors. However, HIV is becoming increasingly resistant to these "combination therapies." Recent findings show that inhibition of HIV Gag protein cleavage into its two structural proteins, matrix (MA) and capsid (CA), has a devastating effect on viral production, revealing a potential new target class for HIV treatment. Unlike the widely used HIV protease inhibitors, this new class of inhibitor would target the substrate, not the protease enzyme itself. This approach offers …


Drug Resistance Mutations Alter Dynamics Of Inhibitor-Bound Hiv-1 Protease, Yufeng Cai, Wazo Myint, Janet Paulsen, Celia Schiffer, Rieko Ishima, Nese Yilmaz Jan 2015

Drug Resistance Mutations Alter Dynamics Of Inhibitor-Bound Hiv-1 Protease, Yufeng Cai, Wazo Myint, Janet Paulsen, Celia Schiffer, Rieko Ishima, Nese Yilmaz

Celia A. Schiffer

Under the selective pressure of therapy, HIV-1 protease mutants resistant to inhibitors evolve to confer drug resistance. Such mutations can impact both the dynamics and structures of the bound and unbound forms of the enzyme. Flap+ is a multidrug-resistant variant of HIV-1 protease with a combination of primary and secondary resistance mutations (L10I, G48V, I54V, V82A) and a strikingly altered thermodynamic profile for darunavir (DRV) binding relative to the wild-type protease. We elucidated the impact of these mutations on protein dynamics in the DRV-bound state using molecular dynamics simulations and NMR relaxation experiments. Both methods concur in that the conformational …


Prototypical Recombinant Multi-Protease Inhibitor Resistant Infectious Molecular Clones Of Human Immunodeficiency Virus Type-1, Vici Varghese, Yumi Mitsuya, W. Jeffrey Fessel, Tommy F. Liu, George Melikian, David Katzenstein, Celia Schiffer, Susan Holmes, Robert Shafer Jan 2015

Prototypical Recombinant Multi-Protease Inhibitor Resistant Infectious Molecular Clones Of Human Immunodeficiency Virus Type-1, Vici Varghese, Yumi Mitsuya, W. Jeffrey Fessel, Tommy F. Liu, George Melikian, David Katzenstein, Celia Schiffer, Susan Holmes, Robert Shafer

Celia A. Schiffer

The many genetic manifestations of HIV-1 protease inhibitor (PI) resistance present challenges to research into the mechanisms of PI-resistance and the assessment of new PIs. To address these challenges, we created a panel of recombinant multi-PI resistant infectious molecular clones designed to represent the spectrum of clinically relevant multi-PI resistant viruses. To assess the representativeness of this panel, we examined the sequences of the panel's viruses in the context of a correlation network of PI-resistance amino acid substitutions in sequences from more than 10,000 patients. The panel of recombinant infectious molecular clones comprised 29 of 41 study-defined PI-resistance amino acid …


The Interdomain Interface In Bifunctional Enzyme Protein 3/4a (Ns3/4a) Regulates Protease And Helicase Activities, Cihan Aydin, Sourav Mukherjee, Alicia Hanson, David Frick, Celia Schiffer Nov 2013

The Interdomain Interface In Bifunctional Enzyme Protein 3/4a (Ns3/4a) Regulates Protease And Helicase Activities, Cihan Aydin, Sourav Mukherjee, Alicia Hanson, David Frick, Celia Schiffer

Celia A. Schiffer

Hepatitis C (HCV) protein 3/4A (NS3/4A) is a bifunctional enzyme comprising two separate domains with protease and helicase activities, which are essential for viral propagation. Both domains are stable and have enzymatic activity separately, and the relevance and implications of having protease and helicase together as a single protein remains to be explored. Altered in vitro activities of isolated domains compared with the full-length NS3/4A protein suggest the existence of interdomain communication. The molecular mechanism and extent of this communication was investigated by probing the domain-domain interface observed in HCV NS3/4A crystal structures. We found in molecular dynamics simulations that …


Cooperative Effects Of Drug-Resistance Mutations In The Flap Region Of Hiv-1 Protease, Jennifer Foulkes-Murzycki, Christina Rosi, Nese Yilmaz, Robert Shafer, Celia Schiffer Jul 2013

Cooperative Effects Of Drug-Resistance Mutations In The Flap Region Of Hiv-1 Protease, Jennifer Foulkes-Murzycki, Christina Rosi, Nese Yilmaz, Robert Shafer, Celia Schiffer

Celia A. Schiffer

Understanding the interdependence of multiple mutations in conferring drug resistance is crucial to the development of novel and robust inhibitors. As HIV-1 protease continues to adapt and evade inhibitors while still maintaining the ability to specifically recognize and efficiently cleave its substrates, the problem of drug resistance has become more complicated. Under the selective pressure of therapy, correlated mutations accumulate throughout the enzyme to compromise inhibitor binding, but characterizing their energetic interdependency is not straightforward. A particular drug resistant variant (L10I/G48V/I54V/V82A) displays extreme entropy-enthalpy compensation relative to wild-type enzyme but a similar variant (L10I/G48V/I54A/V82A) does not. Individual mutations of sites …


Quantitative Comparison Of Errors In 15n Transverse Relaxation Rates Measured Using Various Cpmg Phasing Schemes, Wazo Myint, Yufeng Cai, Celia Schiffer, Rieko Ishima Oct 2012

Quantitative Comparison Of Errors In 15n Transverse Relaxation Rates Measured Using Various Cpmg Phasing Schemes, Wazo Myint, Yufeng Cai, Celia Schiffer, Rieko Ishima

Celia A. Schiffer

Nitrogen-15 Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiment are widely used to characterize protein backbone dynamics and chemical exchange parameters. Although an accurate value of the transverse relaxation rate, R(2), is needed for accurate characterization of dynamics, the uncertainty in the R(2) value depends on the experimental settings and the details of the data analysis itself. Here, we present an analysis of the impact of CPMG pulse phase alternation on the accuracy of the (15)N CPMG R(2). Our simulations show that R(2) can be obtained accurately for a relatively wide spectral width, either using the conventional phase cycle or using phase alternation …


Extreme Entropy-Enthalpy Compensation In A Drug-Resistant Variant Of Hiv-1 Protease, Nancy King, Moses Prabu-Jeyabalan, Rajintha Bandaranayake, Madhavi Nalam, Ellen Nalivaika, Aysegul Ozen, Turkan Haliloglu, Nese Yilmaz, Celia Schiffer Oct 2012

Extreme Entropy-Enthalpy Compensation In A Drug-Resistant Variant Of Hiv-1 Protease, Nancy King, Moses Prabu-Jeyabalan, Rajintha Bandaranayake, Madhavi Nalam, Ellen Nalivaika, Aysegul Ozen, Turkan Haliloglu, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

The development of HIV-1 protease inhibitors has been the historic paradigm of rational structure-based drug design, where structural and thermodynamic analyses have assisted in the discovery of novel inhibitors. While the total enthalpy and entropy change upon binding determine the affinity, often the thermodynamics are considered in terms of inhibitor properties only. In the current study, profound changes are observed in the binding thermodynamics of a drug-resistant variant compared to wild-type HIV-1 protease, irrespective of the inhibitor bound. This variant (Flap+) has a combination of flap and active site mutations and exhibits extremely large entropy-enthalpy compensation compared to wild-type protease, …


Mass Spectrometry Tools For Analysis Of Intermolecular Interactions, Jared Auclair, Mohan Somasundaran, Karin Green, James Evans, Celia Schiffer, Dagmar Ringe, Gregory Petsko, Jeffrey Agar Oct 2012

Mass Spectrometry Tools For Analysis Of Intermolecular Interactions, Jared Auclair, Mohan Somasundaran, Karin Green, James Evans, Celia Schiffer, Dagmar Ringe, Gregory Petsko, Jeffrey Agar

Celia A. Schiffer

The small quantities of protein required for mass spectrometry (MS) make it a powerful tool to detect binding (protein-protein, protein-small molecule, etc.) of proteins that are difficult to express in large quantities, as is the case for many intrinsically disordered proteins. Chemical cross-linking, proteolysis, and MS analysis, combined, are a powerful tool for the identification of binding domains. Here, we present a traditional approach to determine protein-protein interaction binding sites using heavy water ((18)O) as a label. This technique is relatively inexpensive and can be performed on any mass spectrometer without specialized software.


The Molecular Basis Of Drug Resistance Against Hepatitis C Virus Ns3/4a Protease Inhibitors, Keith Romano, Akbar Ali, Cihan Aydin, Djade Soumana, Aysegul Ozen, Laura Deveau, Casey Silver, Hong Cao, Alicia Newton, Christos Petropoulos, Wei Huang, Celia Schiffer Oct 2012

The Molecular Basis Of Drug Resistance Against Hepatitis C Virus Ns3/4a Protease Inhibitors, Keith Romano, Akbar Ali, Cihan Aydin, Djade Soumana, Aysegul Ozen, Laura Deveau, Casey Silver, Hong Cao, Alicia Newton, Christos Petropoulos, Wei Huang, Celia Schiffer

Celia A. Schiffer

Hepatitis C virus (HCV) infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer …


Context Surrounding Processing Sites Is Crucial In Determining Cleavage Rate Of A Subset Of Processing Sites In Hiv-1 Gag And Gag-Pro-Pol Polyprotein Precursors By Viral Protease, Sook-Kyung Lee, Marc Potempa, Madhavi Kolli, Aysegul Ozen, Celia Schiffer, Ronald Swanstrom Oct 2012

Context Surrounding Processing Sites Is Crucial In Determining Cleavage Rate Of A Subset Of Processing Sites In Hiv-1 Gag And Gag-Pro-Pol Polyprotein Precursors By Viral Protease, Sook-Kyung Lee, Marc Potempa, Madhavi Kolli, Aysegul Ozen, Celia Schiffer, Ronald Swanstrom

Celia A. Schiffer

Processing of the human immunodeficiency virus type 1 (HIV-1) Gag and Gag-Pro-Pol polyproteins by the HIV-1 protease (PR) is essential for the production of infectious particles. However, the determinants governing the rates of processing of these substrates are not clearly understood. We studied the effect of substrate context on processing by utilizing a novel protease assay in which a substrate containing HIV-1 matrix (MA) and the N-terminal domain of capsid (CA) is labeled with a FlAsH (fluorescein arsenical hairpin) reagent. When the seven cleavage sites within the Gag and Gag-Pro-Pol polyproteins were placed at the MA/CA site, the rates of …


Structural, Kinetic, And Thermodynamic Studies Of Specificity Designed Hiv-1 Protease, Oscar Alvizo, Seema Mittal, Stephen Mayo, Celia Schiffer Oct 2012

Structural, Kinetic, And Thermodynamic Studies Of Specificity Designed Hiv-1 Protease, Oscar Alvizo, Seema Mittal, Stephen Mayo, Celia Schiffer

Celia A. Schiffer

HIV-1 protease recognizes and cleaves more than 12 different substrates leading to viral maturation. While these substrates share no conserved motif, they are specifically selected for and cleaved by protease during viral life cycle. Drug resistant mutations evolve within the protease that compromise inhibitor binding but allow the continued recognition of all these substrates. While the substrate envelope defines a general shape for substrate recognition, successfully predicting the determinants of substrate binding specificity would provide additional insights into the mechanism of altered molecular recognition in resistant proteases. We designed a variant of HIV protease with altered specificity using positive computational …


Methyl- And Normal-Cytosine Deamination By The Foreign Dna Restriction Enzyme Apobec3a, Michael Carpenter, Ming Li, Anurag Rathore, Lela Lackey, Emily Law, Allison Land, Brandon Leonard, Shivender Shandilya, Markus-Frederik Bohn, Celia Schiffer, William Brown, Reuben Harris Oct 2012

Methyl- And Normal-Cytosine Deamination By The Foreign Dna Restriction Enzyme Apobec3a, Michael Carpenter, Ming Li, Anurag Rathore, Lela Lackey, Emily Law, Allison Land, Brandon Leonard, Shivender Shandilya, Markus-Frederik Bohn, Celia Schiffer, William Brown, Reuben Harris

Celia A. Schiffer

Multiple studies have indicated that the TET oxidases and, more controversially, the AID/APOBEC deaminases have the capacity to convert genomic DNA 5-methylcytosine (MeC) into altered nucleobases that provoke excision repair and culminate in the replacement of the original MeC with a normal cytosine (C). We show that human APOBEC3A (A3A) efficiently deaminates both MeC to thymine (T) and normal C to uracil (U) in single-stranded DNA substrates. In comparison, the related enzyme APOBEC3G (A3G) has undetectable MeC-to-T activity and 10-fold less C-to-U activity. Upon 100-fold induction of endogenous A3A by interferon, the MeC status of bulk chromosomal DNA is unaltered …


Design, Synthesis, And Biological And Structural Evaluations Of Novel Hiv-1 Protease Inhibitors To Combat Drug Resistance, Maloy Parai, David Huggins, Hong Cao, Madhavi Nalam, Akbar Ali, Celia Schiffer, Bruce Tidor, Tariq Rana Oct 2012

Design, Synthesis, And Biological And Structural Evaluations Of Novel Hiv-1 Protease Inhibitors To Combat Drug Resistance, Maloy Parai, David Huggins, Hong Cao, Madhavi Nalam, Akbar Ali, Celia Schiffer, Bruce Tidor, Tariq Rana

Celia A. Schiffer

A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants. In particular, inhibitors containing the 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with K(i) values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and C …


Hydrophobic Core Flexibility Modulates Enzyme Activity In Hiv-1 Protease, Seema Mittal, Yufeng Cai, Madhavi Nalam, Daniel Bolon, Celia Schiffer Oct 2012

Hydrophobic Core Flexibility Modulates Enzyme Activity In Hiv-1 Protease, Seema Mittal, Yufeng Cai, Madhavi Nalam, Daniel Bolon, Celia Schiffer

Celia A. Schiffer

Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the …


First-In-Class Small Molecule Inhibitors Of The Single-Strand Dna Cytosine Deaminase Apobec3g, Ming Li, Shivender Shandilya, Michael Carpenter, Anurag Rathore, William Brown, Angela Perkins, Daniel Harki, Jonathan Solberg, Derek Hook, Krishan Pandey, Michael Parniak, Jeffrey Johnson, Nevan Krogan, Mohan Somasundaran, Akbar Ali, Celia Schiffer, Reuben Harris Sep 2012

First-In-Class Small Molecule Inhibitors Of The Single-Strand Dna Cytosine Deaminase Apobec3g, Ming Li, Shivender Shandilya, Michael Carpenter, Anurag Rathore, William Brown, Angela Perkins, Daniel Harki, Jonathan Solberg, Derek Hook, Krishan Pandey, Michael Parniak, Jeffrey Johnson, Nevan Krogan, Mohan Somasundaran, Akbar Ali, Celia Schiffer, Reuben Harris

Celia A. Schiffer

APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions …


Structural Insights Into Neuronal K+ Channel-Calmodulin Complexes, Karen Mruk, Shivender Shandilya, Robert Blaustein, Celia Schiffer, William Kobertz Sep 2012

Structural Insights Into Neuronal K+ Channel-Calmodulin Complexes, Karen Mruk, Shivender Shandilya, Robert Blaustein, Celia Schiffer, William Kobertz

Celia A. Schiffer

Calmodulin (CaM) is a ubiquitous intracellular calcium sensor that directly binds to and modulates a wide variety of ion channels. Despite the large repository of high-resolution structures of CaM bound to peptide fragments derived from ion channels, there is no structural information about CaM bound to a fully folded ion channel at the plasma membrane. To determine the location of CaM docked to a functioning KCNQ K(+) channel, we developed an intracellular tethered blocker approach to measure distances between CaM residues and the ion-conducting pathway. Combining these distance restraints with structural bioinformatics, we generated an archetypal quaternary structural model of …


Nitric Oxide-Mediated Inhibition Of Hdm2-P53 Binding, Christopher Schonhoff, Marie-Claire Daou, Stephen Jones, Celia Schiffer, Alonzo Ross Nov 2011

Nitric Oxide-Mediated Inhibition Of Hdm2-P53 Binding, Christopher Schonhoff, Marie-Claire Daou, Stephen Jones, Celia Schiffer, Alonzo Ross

Celia A. Schiffer

It has become increasingly evident that nitric oxide exerts its effects, in part, by S-nitrosylation of cysteine residues. We tested in vitro whether nitric oxide may indirectly control p53 by S-nitrosylation and inactivation of the p53 negative regulator, Hdm2. Treatment of Hdm2 with a nitric oxide donor inhibits Hdm2-p53 binding, a critical step in Hdm2 regulation of p53. The presence of excess amounts of cysteine or dithiothreitol blocks this inhibition of binding. Moreover, nitric oxide inhibition of Hdm2-p53 binding was found to be reversible. Sulfhydryl sensitivity and reversibility are consistent with nitrosylation. Finally, we have identified a critical cysteine residue …


Evaluation Of The Substrate Envelope Hypothesis For Inhibitors Of Hiv-1 Protease, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Celia Schiffer, Michael Gilson Nov 2011

Evaluation Of The Substrate Envelope Hypothesis For Inhibitors Of Hiv-1 Protease, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Celia Schiffer, Michael Gilson

Celia A. Schiffer

Crystallographic data show that various substrates of HIV protease occupy a remarkably uniform region within the binding site; this region has been termed the substrate envelope. It has been suggested that an inhibitor that fits within the substrate envelope should tend to evade viral resistance because a protease mutation that reduces the affinity of the inhibitor will also tend to reduce the affinity of substrate, and will hence decrease the activity of the enzyme. Accordingly, inhibitors that fit the substrate envelope better should be less susceptible to clinically observed resistant mutations, since these must also allow substrates to bind. The …


Expression, Purification, And Characterization Of Thymidylate Synthase From Lactococcus Lactis, Patricia Greene, Pak-Lam Yu, Jia Zhao, Celia Schiffer, Daniel Santi Nov 2011

Expression, Purification, And Characterization Of Thymidylate Synthase From Lactococcus Lactis, Patricia Greene, Pak-Lam Yu, Jia Zhao, Celia Schiffer, Daniel Santi

Celia A. Schiffer

The thymidylate synthase (TS) gene from Lactococcus lactis has been highly expressed in Escherichia coli. The TS protein was purified by sequential chromatography on Q-Sepharose and phenyl-Sepharose. Six grams of cell pellet yielded 140 mg of homogeneous TS. TS is a highly conserved enzyme, and several of the conserved amino acid residues that have been implicated in catalytic function are altered in L. lactis TS. By use of a 3-dimensional homology model, we have predicted covariant changes that might compensate for these differences. With the large amounts of L. lactis TS now available, studies can be pursued to understand the …


Association Of A Novel Human Immunodeficiency Virus Type 1 Protease Substrate Cleft Mutation, L23i, With Protease Inhibitor Therapy And In Vitro Drug Resistance, Elizabeth Johnston, Mark Winters, Soo-Yon Rhee, Thomas Merigan, Celia Schiffer, Robert Shafer Nov 2011

Association Of A Novel Human Immunodeficiency Virus Type 1 Protease Substrate Cleft Mutation, L23i, With Protease Inhibitor Therapy And In Vitro Drug Resistance, Elizabeth Johnston, Mark Winters, Soo-Yon Rhee, Thomas Merigan, Celia Schiffer, Robert Shafer

Celia A. Schiffer

We observed a previously uncharacterized mutation in the protease substrate cleft, L23I, in 31 of 4,303 persons undergoing human immunodeficiency virus type 1 genotypic resistance testing. In combination with V82I, L23I was associated with a sevenfold reduction in nelfinavir susceptibility and a decrease in replication capacity. In combination with other drug resistance mutations, L23I was associated with multidrug resistance and a compensatory increase in replication capacity.


Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer Nov 2011

Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer

Celia A. Schiffer

The selective pressure of the competitive protease inhibitors causes both HIV-1 protease and occasionally its substrates to evolve drug resistance. We hypothesize that this occurs particularly in substrates that protrude beyond the substrate envelope and contact residues that mutate in response to a particular protease inhibitor. To validate this hypothesis, we analyzed substrate and protease sequences for covariation. Using the chi2 test, we show a positive correlation between the nelfinavir-resistant D30N/N88D protease mutations and mutations at the p1-p6 cleavage site as compared to the other cleavage sites. Both nelfinavir and the substrate p1-p6 protrude beyond the substrate envelope and contact …


Reca Dimers Serve As A Functional Unit For Assembly Of Active Nucleoprotein Filaments, Anthony Forget, Michelle Kudron, Dharia Mcgrew, Melissa Calmann, Celia Schiffer, Kendall Knight Nov 2011

Reca Dimers Serve As A Functional Unit For Assembly Of Active Nucleoprotein Filaments, Anthony Forget, Michelle Kudron, Dharia Mcgrew, Melissa Calmann, Celia Schiffer, Kendall Knight

Celia A. Schiffer

All RecA-like recombinase enzymes catalyze DNA strand exchange as elongated filaments on DNA. Despite numerous biochemical and structural studies of RecA and the related Rad51 and RadA proteins, the unit oligomer(s) responsible for nucleoprotein filament assembly and coordinated filament activity remains undefined. We have created a RecA fused dimer protein and show that it maintains in vivo DNA repair and LexA co-protease activities, as well as in vitro ATPase and DNA strand exchange activities. Our results support the idea that dimeric RecA is an important functional unit both for assembly of nucleoprotein filaments and for their coordinated activity during the …


Substrate Shape Determines Specificity Of Recognition For Hiv-1 Protease: Analysis Of Crystal Structures Of Six Substrate Complexes, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer Nov 2011

Substrate Shape Determines Specificity Of Recognition For Hiv-1 Protease: Analysis Of Crystal Structures Of Six Substrate Complexes, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer

Celia A. Schiffer

The homodimeric HIV-1 protease is the target of some of the most effective antiviral AIDS therapy, as it facilitates viral maturation by cleaving ten asymmetric and nonhomologous sequences in the Gag and Pol polyproteins. Since the specificity of this enzyme is not easily determined from the sequences of these cleavage sites alone, we solved the crystal structures of complexes of an inactive variant (D25N) of HIV-1 protease with six peptides that correspond to the natural substrate cleavage sites. When the protease binds to its substrate and buries nearly 1000 A2 of surface area, the symmetry of the protease is broken, …