Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett May 2018

Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett

Senior Theses

This project tests and explores resonance of strings. Since all materials and mechanisms are affected by vibrations, it is important to know the frequencies at which resonance occurs. To explore this subject, strings were used as a model material to test the effect tension has on resonance. The fundamental frequencies and the corresponding modes of resonance were used to analyze the data. The results of this experiment show that increasing tension on a string increases its resonance frequency. Understanding the physics behind resonance frequency allows systems to be designed to take advantage of resonance properties, or to avoid resonance where …


Mechanically Driven Pendula For Instructional Laboratories, R. M. Pacheco Jan 2018

Mechanically Driven Pendula For Instructional Laboratories, R. M. Pacheco

Master's Theses and Doctoral Dissertations

I present a new, low-cost approach to observing driven resonance with simple and physical pendula. I mount a pendulum on a dynamics cart that is made to oscillate along a horizontal line by a stepper motor and micro-controller. The pendulum pivot therefore has a position that varies sinusoidally with time with a constant, adjustable frequency. I designed and constructed the experiment to be easily implemented into any physics lab. I tested the apparatus and observed driven resonance for both types of pendula. All of the measured resonant frequencies I determined using the apparatus had percent uncertainties under 4% and all …


Resonant Anisotropic Emission In Rabbitt Spectroscopy, Bejan M. Ghomashi Jan 2018

Resonant Anisotropic Emission In Rabbitt Spectroscopy, Bejan M. Ghomashi

Honors Undergraduate Theses

A variant of RABBITT pump-probe spectroscopy in which the attosecond pulse train comprises both even and odd harmonics of the fundamental IR probe frequency is explored to measure time-resolved photoelectron emission in systems that exhibit autoionizing states. It is shown that the group delay of both one-photon and two-photon resonant transitions is directly encoded in the energy-resolved photoelectron anisotropy as a function of the pump-probe time-delay. This principle is illustrated for a 1D model with symmetric zero-range potentials that supports both bound states and shape-resonances. The model is studied using both perturbation theory and solving the time-dependent Schodinger equation on …