Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physics

University of Texas Rio Grande Valley

Gravitational wave astronomy

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Narrowband Searches For Continuous And Long-Duration Transient Gravitational Waves From Known Pulsars In The Ligo-Virgo Third Observing Run, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, Teviet Creighton, Mario C. Diaz, F. Llamas, Soma Mukherjee, Volker Quetschke, Wenhui Wang Jun 2022

Narrowband Searches For Continuous And Long-Duration Transient Gravitational Waves From Known Pulsars In The Ligo-Virgo Third Observing Run, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, Teviet Creighton, Mario C. Diaz, F. Llamas, Soma Mukherjee, Volker Quetschke, Wenhui Wang

Physics and Astronomy Faculty Publications and Presentations

Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those …


Search For Lensing Signatures In The Gravitational-Wave Observations From The First Half Of Ligo–Virgo's Third Observing Run, Richard Abbott, Thomas D. Abbott, S. Abraham, Fausto Acernese, K. Ackley, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Karla E. Ramirez, Wenhui Wang Dec 2021

Search For Lensing Signatures In The Gravitational-Wave Observations From The First Half Of Ligo–Virgo's Third Observing Run, Richard Abbott, Thomas D. Abbott, S. Abraham, Fausto Acernese, K. Ackley, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Karla E. Ramirez, Wenhui Wang

Physics and Astronomy Faculty Publications and Presentations

We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; (2) how the interpretation of individual high-mass events would change if they were found to be lensed; (3) the possibility of multiple images due to strong lensing by galaxies or galaxy …


Properties And Astrophysical Implications Of The 150 M ⊙ Binary Black Hole Merger Gw190521, R. Abbott, T. D. Abbott, A. Aich, G. Bissenbayeva, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, P. K. Roy, W. H. Wang, A. K. Zadrozny Sep 2020

Properties And Astrophysical Implications Of The 150 M ⊙ Binary Black Hole Merger Gw190521, R. Abbott, T. D. Abbott, A. Aich, G. Bissenbayeva, Teviet Creighton, Mario C. Diaz, S. Mukherjee, V. Quetschke, Malik Rakhmanov, K. E. Ramirez, P. K. Roy, W. H. Wang, A. K. Zadrozny

Physics and Astronomy Faculty Publications and Presentations

The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, M ⊙ and M ⊙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65–120 M ⊙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger ( M ⊙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular …


Model Comparison From Ligo–Virgo Data On Gw170817’S Binary Components And Consequences For The Merger Remnant, B. P. Abbott, R. Abbott, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, K. E. Ramirez, Satzhan Sitmukhambetov, Robert Stone, D. Tuyenbayev, W. H. Wang, A. K. Zadrozny Jan 2020

Model Comparison From Ligo–Virgo Data On Gw170817’S Binary Components And Consequences For The Merger Remnant, B. P. Abbott, R. Abbott, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, K. E. Ramirez, Satzhan Sitmukhambetov, Robert Stone, D. Tuyenbayev, W. H. Wang, A. K. Zadrozny

Physics and Astronomy Faculty Publications and Presentations

GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. …


An Acoustical Analogue Of A Galactic-Scale Gravitational-Wave Detector, Michael T. Lam, Joseph D. Romano, Joey Key, M. E. Normandin, ‪Jeffrey S. Hazboun Oct 2018

An Acoustical Analogue Of A Galactic-Scale Gravitational-Wave Detector, Michael T. Lam, Joseph D. Romano, Joey Key, M. E. Normandin, ‪Jeffrey S. Hazboun

Physics and Astronomy Faculty Publications and Presentations

By precisely monitoring the “ticks” of Nature's most precise clocks (millisecond pulsars), scientists are trying to detect the “ripples in spacetime” (gravitational waves) produced by the inspirals of supermassive black holes in the centers of distant merging galaxies. Here, we describe a relatively simple demonstration that uses two metronomes and a microphone to illustrate several techniques used by pulsar astronomers to search for and detect gravitational waves. An adapted version of this demonstration could be used as an instructional laboratory investigation at the undergraduate level.