Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Neurosciences

Thomas Jefferson University

2018

Animals

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Evolution Of Cortical Neurogenesis In Amniotes Controlled By Robo Signaling Levels., Adrián Cárdenas, Ana Villalba, Camino De Juan Romero, Esther Picó, Christina Kyrousi, Athanasia C Tzika, Marc Tessier-Lavigne, Le Ma, Micha Drukker, Silvia Cappello, Víctor Borrell Jul 2018

Evolution Of Cortical Neurogenesis In Amniotes Controlled By Robo Signaling Levels., Adrián Cárdenas, Ana Villalba, Camino De Juan Romero, Esther Picó, Christina Kyrousi, Athanasia C Tzika, Marc Tessier-Lavigne, Le Ma, Micha Drukker, Silvia Cappello, Víctor Borrell

Department of Neuroscience Faculty Papers

Cerebral cortex size differs dramatically between reptiles, birds, and mammals, owing to developmental differences in neuron production. In mammals, signaling pathways regulating neurogenesis have been identified, but genetic differences behind their evolution across amniotes remain unknown. We show that direct neurogenesis from radial glia cells, with limited neuron production, dominates the avian, reptilian, and mammalian paleocortex, whereas in the evolutionarily recent mammalian neocortex, most neurogenesis is indirect via basal progenitors. Gain- and loss-of-function experiments in mouse, chick, and snake embryos and in human cerebral organoids demonstrate that high Slit/Robo and low Dll1 signaling, via Jag1 and Jag2, are necessary and …


Synaptic Nanomodules Underlie The Organization And Plasticity Of Spine Synapses., Martin Hruska, Nathan T. Henderson, Sylvain J. Le Marchand, Haani Jafri, Matthew B. Dalva May 2018

Synaptic Nanomodules Underlie The Organization And Plasticity Of Spine Synapses., Martin Hruska, Nathan T. Henderson, Sylvain J. Le Marchand, Haani Jafri, Matthew B. Dalva

Department of Neuroscience Faculty Papers

Experience results in long-lasting changes in dendritic spine size, yet how the molecular architecture of the synapse responds to plasticity remains poorly understood. Here a combined approach of multicolor stimulated emission depletion microscopy (STED) and confocal imaging in rat and mouse demonstrates that structural plasticity is linked to the addition of unitary synaptic nanomodules to spines. Spine synapses in vivo and in vitro contain discrete and aligned subdiffraction modules of pre- and postsynaptic proteins whose number scales linearly with spine size. Live-cell time-lapse super-resolution imaging reveals that NMDA receptor-dependent increases in spine size are accompanied both by enhanced mobility of …