Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Intrinsically Disordered Regions Are Poised To Act As Sensors Of Cellular Chemistry, David Moses, Garrett M Ginell, Alex S Holehouse, Shahar Sukenik Dec 2023

Intrinsically Disordered Regions Are Poised To Act As Sensors Of Cellular Chemistry, David Moses, Garrett M Ginell, Alex S Holehouse, Shahar Sukenik

2020-Current year OA Pubs

Intrinsically disordered proteins and protein regions (IDRs) are abundant in eukaryotic proteomes and play a wide variety of essential roles. Instead of folding into a stable structure, IDRs exist in an ensemble of interconverting conformations whose structure is biased by sequence-dependent interactions. The absence of a stable 3D structure, combined with high solvent accessibility, means that IDR conformational biases are inherently sensitive to changes in their environment. Here, we argue that IDRs are ideally poised to act as sensors and actuators of cellular physicochemistry. We review the physical principles that underlie IDR sensitivity, the molecular mechanisms that translate this sensitivity …


A Disordered Region Controls Cbaf Activity Via Condensation And Partner Recruitment, Ajinkya Patil, Amy R Strom, Joao A Paulo, Clayton K Collings, Kiersten M Ruff, Min Kyung Shinn, Akshay Sankar, Kasey S Cervantes, Tobias Wauer, Jessica D St Laurent, Grace Xu, Lindsay A Becker, Steven P Gygi, Rohit V Pappu, Clifford P Brangwynne, Cigall Kadoch Oct 2023

A Disordered Region Controls Cbaf Activity Via Condensation And Partner Recruitment, Ajinkya Patil, Amy R Strom, Joao A Paulo, Clayton K Collings, Kiersten M Ruff, Min Kyung Shinn, Akshay Sankar, Kasey S Cervantes, Tobias Wauer, Jessica D St Laurent, Grace Xu, Lindsay A Becker, Steven P Gygi, Rohit V Pappu, Clifford P Brangwynne, Cigall Kadoch

2020-Current year OA Pubs

Intrinsically disordered regions (IDRs) represent a large percentage of overall nuclear protein content. The prevailing dogma is that IDRs engage in non-specific interactions because they are poorly constrained by evolutionary selection. Here, we demonstrate that condensate formation and heterotypic interactions are distinct and separable features of an IDR within the ARID1A/B subunits of the mSWI/SNF chromatin remodeler, cBAF, and establish distinct "sequence grammars" underlying each contribution. Condensation is driven by uniformly distributed tyrosine residues, and partner interactions are mediated by non-random blocks rich in alanine, glycine, and glutamine residues. These features concentrate a specific cBAF protein-protein interaction network and are …


Intrinsic Disorder In Prame And Its Role In Uveal Melanoma, Michael Antonietti, David J. Taylor Gonzalez, Mak Djulbegovic, Guy W. Dayhoff, Vladimir N. Uversky, Carol L. Shields, Carol L. Karp Aug 2023

Intrinsic Disorder In Prame And Its Role In Uveal Melanoma, Michael Antonietti, David J. Taylor Gonzalez, Mak Djulbegovic, Guy W. Dayhoff, Vladimir N. Uversky, Carol L. Shields, Carol L. Karp

Wills Eye Hospital Papers

Introduction

The PReferentially expressed Antigen in MElanoma (PRAME) protein has been shown to be an independent biomarker for increased risk of metastasis in Class 1 uveal melanomas (UM). Intrinsically disordered proteins and regions of proteins (IDPs/IDPRs) are proteins that do not have a well-defined three-dimensional structure and have been linked to neoplastic development. Our study aimed to evaluate the presence of intrinsic disorder in PRAME and the role these structureless regions have in PRAME( +) Class 1 UM.

Methods

A bioinformatics study to characterize PRAME’s propensity for the intrinsic disorder. We first used the AlphaFold tool to qualitatively assess the …


Pre-Molten, Wet, And Dry Molten Globules En Route To The Functional State Of Proteins, Munishwar Nath Gupta, Vladimir N. Uversky Jan 2023

Pre-Molten, Wet, And Dry Molten Globules En Route To The Functional State Of Proteins, Munishwar Nath Gupta, Vladimir N. Uversky

Molecular Medicine Faculty Publications

Transitions between the unfolded and native states of the ordered globular proteins are accompanied by the accumulation of several intermediates, such as pre-molten globules, wet molten globules, and dry molten globules. Structurally equivalent conformations can serve as native functional states of intrinsically disordered proteins. This overview captures the characteristics and importance of these molten globules in both structured and intrinsically disordered proteins. It also discusses examples of engineered molten globules. The formation of these intermediates under conditions of macromolecular crowding and their interactions with nanomaterials are also reviewed.


Liaisons Dangereuses: Intrinsic Disorder In Cellular Proteins Recruited To Viral Infection-Related Biocondensates, Greta Bianchi, Stefania Brocca, Sonia Longhi, Vladimir N. Uversky Jan 2023

Liaisons Dangereuses: Intrinsic Disorder In Cellular Proteins Recruited To Viral Infection-Related Biocondensates, Greta Bianchi, Stefania Brocca, Sonia Longhi, Vladimir N. Uversky

Molecular Medicine Faculty Publications

Liquid–liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on …