Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 53

Full-Text Articles in Entire DC Network

Me-Em Enewsbrief, July-December 2017, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Dec 2017

Me-Em Enewsbrief, July-December 2017, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


Distributed Manufacturing Of Flexible Products: Technical Feasibility And Economic Viability, Aubrey Woern, Joshua M. Pearce Oct 2017

Distributed Manufacturing Of Flexible Products: Technical Feasibility And Economic Viability, Aubrey Woern, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Distributed manufacturing even at the household level is now well established with the combined use of open source designs and self-replicating rapid prototyper (RepRap) 3-D printers. Previous work has shown substantial economic consumer benefits for producing their own polymer products. Now flexible filaments are available at roughly 3-times the cost of more conventional 3-D printing materials. To provide some insight into the potential for flexible filament to be both technically feasible and economically viable for distributed digital manufacturing at the consumer level this study investigates 20 common flexible household products. The 3-D printed products were quantified by print time, electrical …


Incorporating Student Reflection Into Engineering Courses, Nancy Barr Oct 2017

Incorporating Student Reflection Into Engineering Courses, Nancy Barr

TechTalks

Critical reflection as students move through their disciplinary curriculum is one way to cultivate capacity for critical thinking. By embedding opportunities for critical reflection in disciplinary courses, educators can combine aspects of writing theory, metacognitive learning, and critical pedagogy to help students begin to frame how they will apply their skills and talents to problems effecting diverse populations. The new undergraduate ME curriculum combines applied learning and project-based learning methods in a series of four ME Practice courses. Technical communication instruction is also embedded in these courses, and the “capstone” of each course is a reflective essay. By responding to …


Space Mining Is Almost Here!, Paul Van Susant Oct 2017

Space Mining Is Almost Here!, Paul Van Susant

TechTalks

When going to the Moon and Mars for extended stays with humans it is required to minimize mass by "living off the land" as soon as possible. Mining local resources and using them to produce consumables and construct simple structures can leverage launch mass to the surface of those bodies. In addition, asteroid mining will be able to provide rocket fuel to further spur economic development in CIS-Lunar space and further open up solar system activities. I am working on mining on Mars and the Moon as well as construction using local rocks.


New Concepts In Evolutionary Algorithms For Systems Architecture Optimization, Ossama Abdelkhalik Oct 2017

New Concepts In Evolutionary Algorithms For Systems Architecture Optimization, Ossama Abdelkhalik

TechTalks

This talk will present recent developments in evolutionary algorithms that focus on the systems architecture optimization. One challenge in systems optimization is the variable number of design variables. Three new concepts will be presented in this talk that enable evolutionary algorithms to handle this type of problems more efficiently. The first is the biologically inspired concept of Hidden Genes that implements tags to cover/uncover genes in the variables' code, which enable handling variable number of variables in evolutionary algorithms. The second concept is a structured chromosome approach that transcripts the variables in a multi-layer code as opposed to the standard …


Rarefication Effects On Jet Impingement Loads, Shiying Cai, Chunpei Cai, Kai Zhang, Jun Li Sep 2017

Rarefication Effects On Jet Impingement Loads, Shiying Cai, Chunpei Cai, Kai Zhang, Jun Li

Michigan Tech Publications

Rarefication effects on jet impingement loads are studied by comparing recent new formulas at the collisionless flow limit and numerical simulations. The jet exit size is finite, and can be either planar or round. In the simulations, the jets have different degrees of rarefication, with a Knudsen (Kn) number ranging from 0 to infinity; i.e., the jet flows can be continuum, collisional, or collisionless. The comparison results indicate that (1) the new surface load formulas are accurate at the collisionless flow limit; (2) in general, the formulas offer upper limits for the peak loads; (3) however, it is improper to …


Open Source 3-D Printed Nutating Mixer, Dhwani K. Trivedi, Joshua M. Pearce Sep 2017

Open Source 3-D Printed Nutating Mixer, Dhwani K. Trivedi, Joshua M. Pearce

Department of Materials Science and Engineering Publications

As the open source development of additive manufacturing has led to low-cost desktop three-dimensional (3-D) printing, a number of scientists throughout the world have begun to share digital designs of free and open source scientific hardware. Open source scientific hardware enables custom experimentation, laboratory control, rapid upgrading, transparent maintenance, and lower costs in general. To aid in this trend, this study describes the development, design, assembly, and operation of a 3-D printable open source desktop nutating mixer, which provides a fixed 20° platform tilt angle for a gentle three-dimensional (gyrating) agitation of chemical or biological samples (e.g., DNA or blood …


Impact Of Diy Home Manufacturing With 3d Printing On The Toy And Game Market, Emily Peterson, Joshua M. Pearce Jul 2017

Impact Of Diy Home Manufacturing With 3d Printing On The Toy And Game Market, Emily Peterson, Joshua M. Pearce

Department of Materials Science and Engineering Publications

The 2020 toy and game market is projected to be US$135 billion. To determine if 3D printing could affect these markets if consumers offset purchases by 3D printing free designs, this study investigates the 100 most popular downloaded designs at MyMiniFactory in a month. Savings are quantified for using a Lulzbot Mini 3D printer and three filament types: commercial filament, pellet-extruded filament, and post-consumer waste converted to filament with a recyclebot. Case studies probed the quality of: (1) six common complex toys; (2) Lego blocks; and (3) the customizability of open source board games. All filaments analyzed saved the user …


Three Hundred And Sixty Degree Real-Time Monitoring Of 3-D Printing Using Computer Analysis Of Two Camera Views, Siranee Nuchitprasitchai, Michael C. Roggemann, Joshua M. Pearce Jul 2017

Three Hundred And Sixty Degree Real-Time Monitoring Of 3-D Printing Using Computer Analysis Of Two Camera Views, Siranee Nuchitprasitchai, Michael C. Roggemann, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Prosumer (producing consumer)-based desktop additive manufacturing has been enabled by the recent radical reduction in 3-D printer capital costs created by the open-source release of the self-replicating rapid prototype (RepRap). To continue this success, there have been some efforts to improve reliability, which are either too expensive or lacked automation. A promising method to improve reliability is to use computer vision, although the success rates are still too low for widespread use. To overcome these challenges an open source low-cost reliable real-time optimal monitoring platform for 3-D printing from double cameras is presented here. This error detection system is implemented …


Free And Open Source 3-D Model Customizer For Websites To Democratize Design With Openscad, Yuenyong Nilsiam, Joshua M. Pearce Jul 2017

Free And Open Source 3-D Model Customizer For Websites To Democratize Design With Openscad, Yuenyong Nilsiam, Joshua M. Pearce

Department of Materials Science and Engineering Publications

3-D printing has entered the consumer market because of recent radical price declines. Consumers can save substantial money by offsetting purchases with DIY pre-designed 3-D printed products. However, even more value can be obtained with distributed manufacturing using mass customization. Unfortunately, the average consumer is not technically sophisticated enough to easily design their own products. One solution to this is the use of an overlay on OpenSCAD parametric code, although current solutions force users to relinquish all rights to their own designs. There is thus a substantial need in the open source design community for a libre 3-D model customizer, …


Energy Payback Time Of A Solar Photovoltaic Powered Waste Plastic Recyclebot System, Shan Zhong, Pratiksha Rakhe, Joshua M. Pearce Jun 2017

Energy Payback Time Of A Solar Photovoltaic Powered Waste Plastic Recyclebot System, Shan Zhong, Pratiksha Rakhe, Joshua M. Pearce

Department of Materials Science and Engineering Publications

The growth of both plastic consumption and prosumer 3-D printing are driving an interest in producing 3-D printer filaments from waste plastic. This study quantifies the embodied energy of a vertical DC solar photovoltaic (PV) powered recyclebot based on life cycle energy analysis and compares it to horizontal AC recyclebots, conventional recycling, and the production of a virgin 3-D printer filament. The energy payback time (EPBT) is calculated using the embodied energy of the materials making up the recyclebot itself and is found to be about five days for the extrusion of a poly lactic acid (PLA) filament or 2.5 …


Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce Jun 2017

Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce

Department of Materials Science and Engineering Publications

As low-cost desktop 3D printing is now dominated by free and open source self-replicating rapid prototype (RepRap) derivatives, there is an intense interest in extending the scope of potential applications to manufacturing. This study describes a manufacturing technology that enables a constrained set of polymer-metal composite components. This paper provides (1) free and open source hardware and (2) software for printing systems that achieves metal wire embedment into a polymer matrix 3D-printed part via a novel weaving and wrapping method using (3) OpenSCAD and parametric coding for customized g-code commands. Composite parts are evaluated from the technical viability of manufacturing …


Me-Em Enewsbrief, June 2017, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Jun 2017

Me-Em Enewsbrief, June 2017, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


An Improved Electron Pre-Sheath Model For Tss-1r Current Enhancement Computations, Chunpei Cai Mar 2017

An Improved Electron Pre-Sheath Model For Tss-1r Current Enhancement Computations, Chunpei Cai

Michigan Tech Publications

This report presents improvements of investigations on the Tethered Satellite System (TSS)-1R electron current enhancement due to magnetic limited collections. New analytical expressions are obtained for the potential and temperature changes across the pre-sheath. The mathematical treatments in this work are more rigorous than one past approach. More experimental measurements collected in the ionosphere during the TSS-1R mission are adopted for validations. The relations developed in this work offer two bounding curves for these data points quite successfully; the average of these two curves is close to the curve-fitting results for the measurements; and an average of 2.95 times larger …


Professional Development, Outreach, And Technology Awareness With The Mobile Lab, Jeremy Worm Mar 2017

Professional Development, Outreach, And Technology Awareness With The Mobile Lab, Jeremy Worm

TechTalks

The Mobile Lab is a one of a kind mobile event facility operated by the Advanced Power Systems Research Center (APS LABS). The Mobile Lab travels the country providing hands-on Professional Development short courses, STEM Outreach, and as a venue for increasing awareness of new technologies. The Mobile Lab consists of a classroom, two full-functional powertrain test cells, a fleet of over 25 vehicles, and a chassis dynamometer. The configurability of the Mobile Lab enables support of virtually any technical or non-technical short course or outreach. The Mobile Lab commands attention, generating large crowds at conferences, expos, and community events, …


Model-Driven Design Of Materials, Gregory M. Odegard Mar 2017

Model-Driven Design Of Materials, Gregory M. Odegard

TechTalks

Thomas Edison once said “I have not failed. I've just found 10,000 ways that won't work.” The Edisonian approach to materials development has been the gold standard for most of human history. However, advances in computational speeds and modeling techniques over the last couple of decades have enabled new model-driven approaches to materials development, as manifested in the Integrated Computational Materials Engineering (ICME) and Materials Genome Initiative (MGI) efforts. By designing and simulating new materials in a computational environment, we can dramatically cut down on the cost and time associated with the Edisonian approach to material development. At Michigan Tech, …


Me-Em Enewsbrief, March 2017, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Mar 2017

Me-Em Enewsbrief, March 2017, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


Persistent Operation Of Mobile Robots, Nina Mahmoudian Feb 2017

Persistent Operation Of Mobile Robots, Nina Mahmoudian

TechTalks

Success of numerous unmanned mobile missions in space, air, ground, and water is measured by the ability of the robots to usefully operate for extended time in dynamic and uncertain environments. This talk will provide an overview of the recent progress towards performing autonomous long-term missions. The approach includes task and energy routing scheduling, efficient path planning and coordination, and low-infrastructure platforms. The goal is to provide practical solutions by lowering deployment and operating costs, while also increasing efficiency, endurance and persistence during complex missions like disaster responses and long-term science discoveries.


Doe Apra-E Nextcar Program On Connected And Automated Vehicles In Collaboration With Gm, Jeffrey D. Naber Feb 2017

Doe Apra-E Nextcar Program On Connected And Automated Vehicles In Collaboration With Gm, Jeffrey D. Naber

TechTalks

Within the $3.5M ARPA-e NEXTCAR program, Michigan Tech in collaboration with GM will development and demonstrate on a fleet of eight 2017 Chevrolet Volts and a mobile connected cloud computing center, a Vehicle Dynamics and Powertrain (VD&PT) model-based predictive controller (MPC) encompassing a real-time VD&PT dynamic model leveraging vehicle conductivity (V2X) with real-time traffic modeling and predictive speed horizons and eco-routing. The objective is to achieve a minimum of 20% reduction in energy consumption (electric + fuel) through the first ever real-time implementation and connection of route planning, powertrain energy management MPC algorithms. Connectivity data from vehicles, infrastructure, GPS, traffic …


Me-Em 2016-17 Annual Report, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Jan 2017

Me-Em 2016-17 Annual Report, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics Annual Reports

Table of Contents

  • Undergrad Features
  • Graduate Features
  • Enrollment & Degrees
  • Graduates
  • Faculty & Staff
  • Department News
  • Alumni
  • Donors
  • Contracts & Grants
  • Patents & Publications


Utilizing Reprap Style 3d Printers For The Manufacturing Of Composite Heat Exchangers, John Laureto Jan 2017

Utilizing Reprap Style 3d Printers For The Manufacturing Of Composite Heat Exchangers, John Laureto

Dissertations, Master's Theses and Master's Reports

The low cost 3D printing market is currently dominated by the application of RepRap (self-replicating rapid-prototyper) variants. Presented in this document are practical utilizations of RepRap technology. Developed are innovative processes to manufacture composite materials systems for thermal management solutions.

First, a laser polymer welder system is validated by quantifying maximum peak load and weld width of linear low density polyethylene (LLDPE) lap welds as a function of linear energy density. The development of practical engineering data, in this application, is critical to producing mechanically durable welds. Developed laser and printer parameter sets allow for manufacturing of LLDPE multi-layered heat …


Development Of An Evaporation Sub-Model And Simulation Of Multiple Droplet Impingement In Volume Of Fluid Method, Sathya Prasad Potham Jan 2017

Development Of An Evaporation Sub-Model And Simulation Of Multiple Droplet Impingement In Volume Of Fluid Method, Sathya Prasad Potham

Dissertations, Master's Theses and Master's Reports

Droplet collision and impingement on a substrate are widely observed phenomenon in many applications like spray injection of Internal Combustion Engines. Existing Lagrangian models do not provide a comprehensive picture of the outcome of these events and may involve model constants requiring experimental data for validation. Physics based models like Volume of Fluid (VOF) method involve no parametric tuning and are more accurate. The aim of this thesis is to extend the basic VOF method with an evaporation sub-model including an additional vapor phase and implement this model in an open source Computational Fluid Dynamics (CFD) software, OpenFOAM. The new …


Heat Transfer Analysis In A Paddle Reactor For Biomass Fast Pyrolyis, Ankith Ullal Jan 2017

Heat Transfer Analysis In A Paddle Reactor For Biomass Fast Pyrolyis, Ankith Ullal

Dissertations, Master's Theses and Master's Reports

Heat transfer analysis was performed on a novel auger reactor for biomass fast pyrolysis. As part of this analysis, correlations for specific heat capacity and heat transfer coefficients for biomass (sawdust) and sand (used as heat transfer medium) were developed. For sand, the heat transfer coefficient followed a power law distribution with reactor fill level and temperature. For raw biomass, the heat transfer coefficient also showed similar dependence on fill level, but was independent of temperature up to 300°C. These correlations were used in a one dimensional heat transfer model developed to calculate the heating time and heating rate of …


Nanotextured Titanium Surfaces For Implants: Manufacturing And Packaging Aspects, Sachin Bhosle Jan 2017

Nanotextured Titanium Surfaces For Implants: Manufacturing And Packaging Aspects, Sachin Bhosle

Dissertations, Master's Theses and Master's Reports

It has been shown that nanotexturing the surface of otherwise smooth titanium orthopedic materials increases osteoblast proliferation in vitro, and the bone-implant contact area and pullout force in vivo. However, this prior work has not focused on the requirements for scale-up to industrial processes. This dissertation reports on titanium surface modifications by electrochemical anodization using a benign NH4F electrolyte, and a hybrid electrolyte also containing AgF, rather than hazardous hydrofluoric acid used elsewhere. Nanotube fabrication of Ti6Al4V foils, rods, thermal plasma sprayed commercial implants, and laser and e-beam melted powder materials was demonstrated.

It was found …


A Study Of High Temperature Heat Pipes And The Impact Of Magnetic Field On The Flow Of Liquid Metal, Udit Sharma Jan 2017

A Study Of High Temperature Heat Pipes And The Impact Of Magnetic Field On The Flow Of Liquid Metal, Udit Sharma

Dissertations, Master's Theses and Master's Reports

A study of high temperature heat pipe was conducted to understand its characteristics. A review of working fluid, temperature, wick structure, problems, operational limit and applications was done. Alkali metal were concluded as the most viable candidate for the working fluid.

The impact of three parameters namely magnetic field, heat flux and temperature was analyzed on the performance of HTHP (High Temperature Heat Pipe). The presence of magnetic field had the most considerable impact on reducing the pumping limit of the heat pipe while the temperature had almost negligible effect. Magnetic field results in the pressure drop and adversely affect …


Analysis Of Aeroelastic Effects On The 3-Dimensional Interference Of Wind-Turbine Rotors, Anurag Rajan Jan 2017

Analysis Of Aeroelastic Effects On The 3-Dimensional Interference Of Wind-Turbine Rotors, Anurag Rajan

Dissertations, Master's Theses and Master's Reports

Greater penetration of wind energy demands better utilization of available wind. This has led to a formidable increase in the rotor diameter over the past few years. Bigger rotors call for lighter, more flexible blades to reduce loads and improve fatigue life. As a result, future blades will deform substantially more than the relatively stiff blades of the past. More efficient use of wind power also calls for incorporating advanced active and passive control strategies and increasing the range of velocities over which wind energy is captured. Hence an improvement in the quality of numerical simulations capable of capturing the …


The Role Of Active Flow-Control Devices In The Dynamic Aeroelastic Response Of Wind Turbine Rotors, Muraleekrishnan Menon Menon Muraleedharan Nair Jan 2017

The Role Of Active Flow-Control Devices In The Dynamic Aeroelastic Response Of Wind Turbine Rotors, Muraleekrishnan Menon Menon Muraleedharan Nair

Dissertations, Master's Theses and Master's Reports

The significance of wind as a renewable source of power is growing with the increasing capacity of individual utility-scale wind turbines. Contemporary wind turbines are capable of producing up to 8 MW and consequently, their rotor sizes are rapidly growing in size. This has led to an increased emphasis on studies related to improvements and innovations in load-control methodologies. Most often than not, controlling the loads on an operational turbine is a precarious scenario, especially under high wind loading. The up-scaling of turbine rotors would thus benefit from a rationale change in load control through methodologies such as variable-speed stall, …


Model-Based Control Of An Rcci Engine, Akshat Abhay Raut Jan 2017

Model-Based Control Of An Rcci Engine, Akshat Abhay Raut

Dissertations, Master's Theses and Master's Reports

Reactivity controlled compression ignition (RCCI) is a combustion strategy that offers high fuel conversion efficiency and near zero emissions of NOx and soot which can help in improving fuel economy in mobile and stationary internal combustion engine (ICE) applications and at the same time lower engine-out emissions. One of the main challenges associated with RCCI combustion is the difficulty in simultaneously controlling combustion phasing, engine load, and cyclic variability during transient engine operations.

This thesis focuses on developing model based controllers for cycle-to-cycle combustion phasing and load control during transient operations. A control oriented model (COM) is developed by using …


Multiscale Modeling: Thermal Conductivity Of Graphene/Cycloaliphatic Epoxy Composites, Sorayot Chinkanjanarot Jan 2017

Multiscale Modeling: Thermal Conductivity Of Graphene/Cycloaliphatic Epoxy Composites, Sorayot Chinkanjanarot

Dissertations, Master's Theses and Master's Reports

The thermal property of epoxy as the binder in the Carbon Fiber (CF) composites, especially thermal conductivity is important to achieve the advance technology and to improve the performance of materials. Multiscale modeling including molecular dynamic (MD) modeling and micromechanical modeling is used to study the properties of neat Cycloaliphatic Epoxies (CE) and Graphene nanoplatelet (GNP)/CE with and without covalent functionalization.

The thermal properties (glass-transition temperature, thermal expansion coefficient, and thermal conductivity) and mechanical properties of CE system are investigated by MD modeling using OPLS-All Atom force field. A unique crosslinking technique is developed to achieve the cured CE models …


Turbulent Transition Simulation And Particulate Capture Modeling With An Incompressible Lattice Boltzmann Method, John R. Murdock Jan 2017

Turbulent Transition Simulation And Particulate Capture Modeling With An Incompressible Lattice Boltzmann Method, John R. Murdock

Dissertations, Master's Theses and Master's Reports

Derivation of an unambiguous incompressible form of the lattice Boltzmann equation is pursued in this dissertation. Further, parallelized implementation in developing application areas is researched. In order to achieve a unique incompressible form which clarifies the algorithm implementation, appropriate ansatzes are utilized. Through the Chapman-Enskog expansion, the exact incompressible Navier-Stokes equations are recovered. In initial studies, fundamental 2D and 3D canonical simulations are used to evaluate the validity and application, and test the required boundary condition modifications. Several unique advantages over the standard equation and alternative forms found in literature are found, including faster convergence, greater stability, and higher fidelity …