Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 57

Full-Text Articles in Entire DC Network

The Effects Of Scale On Granular Mixing In A Double Screw Pyrolyzer, Breanna L. Marmur Apr 2019

The Effects Of Scale On Granular Mixing In A Double Screw Pyrolyzer, Breanna L. Marmur

Breanna L. Marmur

Granular mixing processes are important to many industries including the pharmaceutical, agricultural, and biotechnology industries. These processes often require both a high degree of homogeneity and a high degree of customizability. As granular mixing processes are so widely employed, a thorough understanding of the mixing dynamics is necessary to understand and control the resulting products. Research into granular mixing processes has been, thus far, largely focused on laboratory scale mixers with simple geometries, while actual industrial processes often require large mixers with complex geometries. Moreover, granular mixing processes are often very sensitive to changes in operating conditions and any solutions …


A Label-Free High Throughput Resistive-Pulse Sensor For Simultaneous Differentiation And Measurement Of Multiple Particle-Laden Analytes, Ashish Jagtiani, Rupesh Sawant, Jiang Zhe Apr 2015

A Label-Free High Throughput Resistive-Pulse Sensor For Simultaneous Differentiation And Measurement Of Multiple Particle-Laden Analytes, Ashish Jagtiani, Rupesh Sawant, Jiang Zhe

Dr. Jiang Zhe

We describe an all-electronic, label-free, resistive-pulse sensor that utilizes multiple microchannels for parallel detection, counting and differentiation of multiple biological particles simultaneously. Four particle solutions, including 20 µm and 40 µm polymethacrylate particles, Juniper Scopulorum (Rocky Mountain Juniper) pollen and Populus deltidoes (Eastern Cottonwood) pollen, were loaded to the four peripheral reservoirs, respectively, and were driven to the central reservoir through four microchannels, all operating simultaneously for particle detection and counting. Experiments demonstrated that this sensor was able to differentiate and count multiple particle solutions simultaneously through its four microchannels fabricated on polymer membranes. Thus the sensing throughput has been …


A New Microfluidic Device For Complete, Continuous Separation Of Microparticles, Liang-Liang Fan, Xu-Kun He, Yu Han, Li Du, Liang Zhao, Jiang Zhe Apr 2015

A New Microfluidic Device For Complete, Continuous Separation Of Microparticles, Liang-Liang Fan, Xu-Kun He, Yu Han, Li Du, Liang Zhao, Jiang Zhe

Dr. Jiang Zhe

A microchannel with symmetric sharp corners is reported for particle separation, based on the inter-play between the inertial lift force and the centrifugal force induced by sharp corners. At an appropriate flow rate, the centrifugal force is larger than the inertial lift force on large particles, while the inertial lift force is dominant on small particles. Hence large particles are centrifuged to the center, while small par-ticles are focused at side streams, achieving complete particle separation. The device requires no sheath flow, avoiding the dilution of analyte sample and complex operation, and can be potentially used for many lab-on-a-chip applications.


Detection And Counting Of Micro Scale Particles And Pollen Using A Multi-Aperture Coulter Counter, Ashish Jagtiani, Jiang Zhe, Jun Hu, Joan Carletta Apr 2015

Detection And Counting Of Micro Scale Particles And Pollen Using A Multi-Aperture Coulter Counter, Ashish Jagtiani, Jiang Zhe, Jun Hu, Joan Carletta

Dr. Jiang Zhe

We demonstrate a high throughput, all-electronic Coulter-type sensor with four sensing microapertures to detect and count micro-scale particles. Four particle samples are utilized for this study: polymethacrylate particles 40 µm and 20 µm in diameter, Juniper Scopulorum (Rocky Mountain Juniper) pollen and Cottonwood pollen particles. The two types of pollen particles are roughly 20 µm in diameter. The particles are mixed with deionized water and forced to pass through the microapertures. Voltage pulses across all four apertures are recorded and analysed. Results demonstrate that the sensor can detect and count particles through its four sensing apertures simultaneously. Thus, the counting …


Novel Quantitative Macro Biomolecule Analysis Based On A Micro Coulter Counter, Y Han, H. Wu, F. Liu, Gang Cheng, Jiang Zhe Apr 2015

Novel Quantitative Macro Biomolecule Analysis Based On A Micro Coulter Counter, Y Han, H. Wu, F. Liu, Gang Cheng, Jiang Zhe

Dr. Jiang Zhe

We demonstrate quantitative biomolecule analysis using a micro coulter counter. Specific binding between antibody functionalized microparticles and target biomolecule cause large aggregates of microparticles. The micro coulter counter was employed to measure aggregation ratio, ratio of the aggregate counts to the total particle counts. Goat anti-rabbit IgG, used as a model biomarker, were tested in this paper. The experiment results showed that the aggregation ratio increases with the increasing biomolecule concentration, and the detectable concentration range from 16 to 160 ng/ml was achieved.


Static And Dynamic Responsive Behavior Of Polyelectrolyte Brushes Under External Electrical Field, Hui Ouyang, Zhenhai Xia, Jiang Zhe Apr 2015

Static And Dynamic Responsive Behavior Of Polyelectrolyte Brushes Under External Electrical Field, Hui Ouyang, Zhenhai Xia, Jiang Zhe

Dr. Jiang Zhe

The static and dynamic behaviors of partially charged and end-grafted polyelectrolyte brushes in response to electric fields were investigated by means of molecular dynamics simulation. The results show that the polymer brushes can be partially or fully stretched by applying an external electric field. Moreover, the brushes can switch reversibly from collapsed to stretched states, fully responding to the AC electric stimuli, and the gating response frequency can reach a few hundred MHz. The effects of the grafting density, the charge fraction of the brushes and the strength of the electric field on the average height of the polymer brushes …


High School Bridge Program: A Multidisciplinary Stem Research Program, Jiang Zhe, Dennis Doverspike, Julie Zhao, Paul C. Lam, Craig C. Menzemer Apr 2015

High School Bridge Program: A Multidisciplinary Stem Research Program, Jiang Zhe, Dennis Doverspike, Julie Zhao, Paul C. Lam, Craig C. Menzemer

Dr. Jiang Zhe

A Science, Technology, Engineering and Math (STEM) summer Bridge Program was developed for high school students. The program was designed to encourage students to consider choosing an engineering major in college and to explore STEM as a future career. This was accomplished through a 10-week program involving multidisciplinary research activities. The participants in the program included 33 high school students. Among former participants in position to make a choice in terms of attending college, 100% had chosen to continue on in college, and 86% had chosen to major in a STEM area. The results indicated that that the program had …


An Evaluation Of A Stem Program For Middle School Students On Learning Disability Related Ieps, Paul C. Lam, Dennis Doverspike, Julie Zhao, Jiang Zhe, Craig C. Menzemer Apr 2015

An Evaluation Of A Stem Program For Middle School Students On Learning Disability Related Ieps, Paul C. Lam, Dennis Doverspike, Julie Zhao, Jiang Zhe, Craig C. Menzemer

Dr. Jiang Zhe

A year long Science, Technology, Engineering and Math (STEM) program was developed for middle schools students on Individualized Education Programs (IEPs) involving learning disabilities. The workshops were designed to encourage students both on IEPs and not on IEPs to explore STEM as a future career choice by building their knowledge and confidence. The participants in the workshops included 11 students on IEPs and 15 students not on IEPs. Parents also provided feedback regarding their attitudes toward the program. The results indicated that there were increases in student participant knowledge and career interest for both the students not on IEPs and …


Passive Continuous Particle Focusing In A Microchannel With Symmetric Sharp Corner Structures, Liang-Liang Fan, Liang Zhao, Xu-Kun He, Hand Yu, Qing-Yu Wei, Jiang Zhe Apr 2015

Passive Continuous Particle Focusing In A Microchannel With Symmetric Sharp Corner Structures, Liang-Liang Fan, Liang Zhao, Xu-Kun He, Hand Yu, Qing-Yu Wei, Jiang Zhe

Dr. Jiang Zhe

We report a continuous passive particle focusing method using a novel microchannel with symmetric sharp corners which induce curved streamlines and large centrifugal force on particles. At appropriate flow rate, the centrifugal force generated on particles exceeds the inertial lift force; particles driven by the centrifugal force migrate toward the center of the microchannel, achieving continuous particle focus-ing. With simple structure and operation, this method can be potentially used in particle focusing and ex-traction processes in a variety of lab-on-a chip applications.


Analysis Of Ductile To Cleavage Transition In Part-Through Cracks Using The Cell Model Incorporating Statistics, Xiaosheng Gao, J. Faleskog, C. Fong Shih Apr 2015

Analysis Of Ductile To Cleavage Transition In Part-Through Cracks Using The Cell Model Incorporating Statistics, Xiaosheng Gao, J. Faleskog, C. Fong Shih

Dr. Xiaosheng Gao

This paper describes an approach to study ductile/cleavage transition in ferritic steels using the methodology of a cell model for ductile tearing incorporating weakest link statistics. The model takes into account the constraint effects and puts no restriction on the extent of plastic deformation or amount of ductile tearing preceding cleavage failure. The parameters associated with the statistical model are calibrated using experimental cleavage fracture toughness data, and the effect of threshold stress on predicted cleavage fracture probability is investigated. The issue of two approaches to compute Weibull stress, the ‘history approach’ and the ‘current approach’, is also addressed. The …


Enabling And Understanding Failure Of Engineering Structures Using The Technique Of Cohesive Elements, H. Jiang, Xiaosheng Gao, T. S. Srivatsan Apr 2015

Enabling And Understanding Failure Of Engineering Structures Using The Technique Of Cohesive Elements, H. Jiang, Xiaosheng Gao, T. S. Srivatsan

Dr. Xiaosheng Gao

In this paper, we describe a cohesive zone model for the prediction of failure of engineering solids and/or structures. A damage evolution law is incorporated into a three-dimensional, exponential cohesive law to account for material degradation under the influence of cyclic loading. This cohesive zone model is implemented in the finite element software ABAQUS through a user defined subroutine. The irreversibility of the cohesive zone model is first verified and subsequently applied for studying cyclic crack growth in specimens experiencing different modes of fracture and/or failure. The crack growth behavior to include both crack initiation and crack propagation becomes a …


Numerical Modeling Of The Constraint Effects On Cleavage Fracture Toughness, Sunil Prakash, Xiaosheng Gao, T. S. Srivatsan Apr 2015

Numerical Modeling Of The Constraint Effects On Cleavage Fracture Toughness, Sunil Prakash, Xiaosheng Gao, T. S. Srivatsan

Dr. Xiaosheng Gao

Cleavage fracture has been an important subject for engineers primarily because of its catastrophic nature and consequences. Experimental studies of cleavage fracture did reveal a considerable amount of scatter and provided evidence of noticeable constraint effects. This did provide the motivation for the development of statistical-based and micromechanics-based methods in order to both study and analyze the problem. The Weibull stress model, which is based on the weakest link statistics, uses two parameters (m and σ u) to effectively describe the inherent distribution of the micro-scale cracks once plastic deformation has occurred and to concurrently define the relationship between the …


Effects Of Particle's Off-Axis Position, Shape, Orientation And Entry Position On Resistance Changes Of Micro Coulter Counting Devices, Zhenpeng Qin, Jiang Zhe, Guo-Xiang Wang Apr 2015

Effects Of Particle's Off-Axis Position, Shape, Orientation And Entry Position On Resistance Changes Of Micro Coulter Counting Devices, Zhenpeng Qin, Jiang Zhe, Guo-Xiang Wang

Dr. Jiang Zhe

With the recent advance in micro/nano-fabrication technology, micro Coulter counters have been widely used in detecting and characterizing micro- and nanoscale objects. In this paper, the electrical resistance change during translocation of a non-conducting particle through a channel is studied numerically. The numerical results are validated by proven analytical results available in the literature. The effects of particle's off-axis position, shape and orientation, and entry position are studied for particles with a large dynamic range. From the numerical results, a new fitted correlation is proposed that can accurately predict the resistance change caused by off-axis spherical particles regardless of their …


A Versatile Microparticle-Based Immunoaggregation Assay For Macromolecular Biomarker Detection And Quantification, Haiyan Wu, Yu Han, George G. Chase, Qiong Tang, Chen-Jung Lee, Bin Cao, Jiang Zhe, Gang Cheng Apr 2015

A Versatile Microparticle-Based Immunoaggregation Assay For Macromolecular Biomarker Detection And Quantification, Haiyan Wu, Yu Han, George G. Chase, Qiong Tang, Chen-Jung Lee, Bin Cao, Jiang Zhe, Gang Cheng

Dr. Jiang Zhe

The rapid, sensitive and low-cost detection of macromolecular biomarkers is critical in clinical diagnostics, environmental monitoring, research, etc. Conventional assay methods usually require bulky, expensive and designated instruments and relative long assay time. For hospitals and laboratories that lack immediate access to analytical instruments, fast and low-cost assay methods for the detection of macromolecular biomarkers are urgently needed. In this work, we developed a versatile microparticle (MP)-based immunoaggregation method for the detection and quantification of macromolecular biomarkers. Antibodies (Abs) were firstly conjugated to MP through streptavidin-biotin interaction; the addition of macromolecular biomarkers caused the aggregation of Ab-MPs, which were subsequently …


Electrical Resistance Monitoring Of Damage And Crack Growth In Advanced Sic-Based Ceramic Composites, Gregory Morscher, Craig Smith, Emmanuel Maillet, Chris Baker, Rabih Monsour Apr 2015

Electrical Resistance Monitoring Of Damage And Crack Growth In Advanced Sic-Based Ceramic Composites, Gregory Morscher, Craig Smith, Emmanuel Maillet, Chris Baker, Rabih Monsour

Dr. Gregory N. Morscher

No abstract provided.


Correlating Electrical Resistance Change With Mechanical Damage In Woven Sic/Sic Composites: Experiment And Modeling, Thanyawalai Sujidkul, Craig Smith, Zhijun Ma, Gregory Morscher, Zhenhai Xia Apr 2015

Correlating Electrical Resistance Change With Mechanical Damage In Woven Sic/Sic Composites: Experiment And Modeling, Thanyawalai Sujidkul, Craig Smith, Zhijun Ma, Gregory Morscher, Zhenhai Xia

Dr. Gregory N. Morscher

Silicon carbide (SiC) fiber-reinforced SiC matrix composites are inherently multifunctional materials. In addition to their primary function as a structural material, the electric properties of the SiC/SiC composites could be used for the sensing and monitoring of in situ damage nucleation and evolution. To detect damage and use that information to further predict the useful life of a particular component, it is necessary to establish the relationship between damage and electrical resistance change. Here, two typical SiC/SiC composites, melt infiltrated (MI), and chemical vapor infiltrated (CVI) woven SiC/SiC composites, were tested to establish the relationship between the electrical response and …


Measurement Of Adhesion Energy Of Electrospun Polymer Membranes Using A Shaft-Loaded Blister Test, Shing Chung Josh Wong, Haining Na, Pei Chen Apr 2015

Measurement Of Adhesion Energy Of Electrospun Polymer Membranes Using A Shaft-Loaded Blister Test, Shing Chung Josh Wong, Haining Na, Pei Chen

Dr. Shing-Chung Josh Wong

This study aims to examine the adhesion work of electrospun polymer nano- and micro-fibers. The adhesion energy at the interface of electrospun membrane and a rigid substrate is characterized by a shaft-loaded blister test (SLBT). By controlling the processing parameters, polyvinylidene fluoride (PVDF) fibrous membranes are prepared with fiber diameters ranging from 201 ± 86 nm to 2,724 ± 587 nm. The adhesion energy between electrospun membrane and rigid substrate increases from 8.1 ± 0.7 mJ/m2 to 258.8 ± 43.5 mJ/m2 by use of smaller fiber diameters. Adhesion energies between electrospun PVDF membranes and SiC substrates made of different grain …


Polymer Fiber Arrays For Adhesion, Shing Chung Josh Wong, Johnny F. Najem, Guang Ji, Shuwen Chen Apr 2015

Polymer Fiber Arrays For Adhesion, Shing Chung Josh Wong, Johnny F. Najem, Guang Ji, Shuwen Chen

Dr. Shing-Chung Josh Wong

The ability of geckos to adhere to vertical solid surfaces comes from their remarkable feet with millions of projections terminating in nanometer spatulae. In this paper, we present a simple yet robust method for fabricating directionally sensitive dry adhesives. By using electrospun nylon 6 nanofiber arrays, we create gecko-inspired dry adhesives, that are electrically insulating, and that show shear adhesion strength of 27 N/cm2 on a glass slide. This measured value is 270% that reported of gecko feet and 97-fold above normal adhesion strength of the same arrays. The data indicate a strong shear binding-on and easy normal lifting-off. Size …


Design, Fabrication, And Properties Of 2-2 Connectivity Cement/Polymer Based Piezoelectric Composites With Varied Piezoelectric Phase Distribution, Xu Dongyu, Cheng Xin, Sourav Banerjee, Huang Shifeng Apr 2015

Design, Fabrication, And Properties Of 2-2 Connectivity Cement/Polymer Based Piezoelectric Composites With Varied Piezoelectric Phase Distribution, Xu Dongyu, Cheng Xin, Sourav Banerjee, Huang Shifeng

Sourav Banerjee

The laminated 2-2 connectivity cement/polymer based piezoelectric composites with variedpiezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramicas active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction ofpiezoelectric phase have large piezoelectric strain constant and relative permittivity, and thepiezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large …


Phonon Confinement Using Spirally Designed Elastic Resonators In Discrete Continuum, Sourav Banerjee, Raiz U. Ahmed Apr 2015

Phonon Confinement Using Spirally Designed Elastic Resonators In Discrete Continuum, Sourav Banerjee, Raiz U. Ahmed

Sourav Banerjee

Periodic and chiral orientation of microstructures, here we call phononic crystals, have extraordinary capabilities to facilitate the innovative design of new generation metamaterials. Periodic arrangements of phononic crystals are capable of opening portals of non-passing, non-dispersive mechanical waves. Defying conventional design of regular periodicity, in this paper spirally periodic but chiral orientation of resonators are envisioned. Dynamics of the spirally connected resonators and the acoustic wave propagation through the spirally connected multiple local resonators are studied using fundamental physics. In present study the spiral systems with local resonators are assumed to be discrete media immersed in fluid. In this paper …


The Integrated Systems Engineering Laboratory- An Innovative Approach To Vertical Integration Using Modern Instrumentation, Ajay Mahajan, Maurice Walworth, David Mcdonald, Kevin Scmaltz Apr 2015

The Integrated Systems Engineering Laboratory- An Innovative Approach To Vertical Integration Using Modern Instrumentation, Ajay Mahajan, Maurice Walworth, David Mcdonald, Kevin Scmaltz

Dr. Ajay Mahajan

The current paradigm in engineering course instruction builds on a lecture prerequisite structure but ignores the need for a laboratory prerequisite structure. Educational quality is therefore diminished as instructors optimize specific laboratories but fail to optimize the overall program laboratory experience. This paper presents a learning environment based on modern instrumentation that forces students to use not only concepts and skills acquired from the lecture, but also actual data and models acquired from lower division laboratories, in upper division laboratories. The vertical integration occurs because students must utilize their previous laboratory work as a reference and/or building blocks as they …


Exploring Technology: A Survey Of Modern Technology For Majors And Non-Majors, David Mcdonald, Ray Adams, James Devaprasad, Ajay Mahajan Apr 2015

Exploring Technology: A Survey Of Modern Technology For Majors And Non-Majors, David Mcdonald, Ray Adams, James Devaprasad, Ajay Mahajan

Dr. Ajay Mahajan

This project improves student awareness of science and technology and increases the retention of freshman students. This goal requires a curriculum development process that creates a pilot course to provide a survey of modern technology. The pilot course leads to a permanent offering in engineering technology that will serve as an orientation course for technology students. The course also serves as a general education elective course to provide general students, including teacher education majors, with a survey of science in modern technology. The course uses active learning experiences as an orientation process to foster student success in technical careers. These …


High Ppeed Circuit Techniques For Network Intrusion Detection Systems (Nids), Ajay Mohan Mahajan Apr 2015

High Ppeed Circuit Techniques For Network Intrusion Detection Systems (Nids), Ajay Mohan Mahajan

Dr. Ajay Mahajan

No abstract provided.


Implementing High-Speed String Matching Hardware For Network Intrusion Detection Systems, Ajay Mahajan, Benfano Soewito, Sai K. Parsi, Ning Weng, Haibo Wang Apr 2015

Implementing High-Speed String Matching Hardware For Network Intrusion Detection Systems, Ajay Mahajan, Benfano Soewito, Sai K. Parsi, Ning Weng, Haibo Wang

Dr. Ajay Mahajan

This paper presents high-throughput techniques for implementing FSM based string matching hardware on FPGAs. By taking advantage of the fact that string matching operations for different packets are independent, a novel multi-threading FSM design is presented, which dramatically increases the FSM frequency and the throughput of string matching operations. In addition, design techniques for high-speed interconnect and interface circuits for the proposed FSM are also presented. Experimental results conducted on FPGA platforms are presented to study the effectiveness of the proposed techniques and explore the trade-offs between system performance, strings partition granularity and hardware resource cost.


Task-Specific And General Cognitive Effects In Chiari Malformation Type I, Philip Allen, James Houston, Joshua Pollock, Christopher Buzzelli, Xuan Li, A. Harrington, Bryn Martin, Francis Loth, Mei-Ching Lien, Jahangir Maleki, Mark Luciano Apr 2015

Task-Specific And General Cognitive Effects In Chiari Malformation Type I, Philip Allen, James Houston, Joshua Pollock, Christopher Buzzelli, Xuan Li, A. Harrington, Bryn Martin, Francis Loth, Mei-Ching Lien, Jahangir Maleki, Mark Luciano

Dr. Bryn Martin

Our objective was to use episodic memory and executive function tests to determine whether or not Chiari Malformation Type I (CM) patients experience cognitive dysfunction.


The Impact Of Spinal Cord Nerve Roots And Denticulate Ligaments On Cerebrospinal Fluid Dynamics In The Cervical Spine, Soroush Heidari Paylavian, Theresia Yiallourou, R. Shane Tubbs, Alexander C. Bunck, Francis Loth, Bryn A. Martin, Mark Goodin, Mehrdad Raisee Apr 2015

The Impact Of Spinal Cord Nerve Roots And Denticulate Ligaments On Cerebrospinal Fluid Dynamics In The Cervical Spine, Soroush Heidari Paylavian, Theresia Yiallourou, R. Shane Tubbs, Alexander C. Bunck, Francis Loth, Bryn A. Martin, Mark Goodin, Mehrdad Raisee

Dr. Bryn Martin

Cerebrospinal fluid (CSF) dynamics in the spinal subarachnoid space (SSS) have been thought to play an important pathophysiological role in syringomyelia, Chiari I malformation (CM), and a role in intrathecal drug delivery. Yet, the impact that fine anatomical structures, including nerve roots and denticulate ligaments (NRDL), have on SSS CSF dynamics is not clear. In the present study we assessed the impact of NRDL on CSF dynamics in the cervical SSS. The 3D geometry of the cervical SSS was reconstructed based on manual segmentation of MRI images of a healthy volunteer and a patient with CM. Idealized NRDL were designed …


Comparison Of 4d Phase-Contrast Mri Flow Measurements To Computational Fluid Dynamics Simulations Of Cerebrospinal Fluid Motion In The Cervical Spine, Theresia Yiallourou, Jan Robert Kroger, Nikolaos Stergiopulos, David Maintz, Bryn A. Martin, Alexander C. Bunck Apr 2015

Comparison Of 4d Phase-Contrast Mri Flow Measurements To Computational Fluid Dynamics Simulations Of Cerebrospinal Fluid Motion In The Cervical Spine, Theresia Yiallourou, Jan Robert Kroger, Nikolaos Stergiopulos, David Maintz, Bryn A. Martin, Alexander C. Bunck

Dr. Bryn Martin

Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurements to subject-specific 3D computational fluid dynamics (CFD) simulations. The CFD simulations considered the geometry to be rigid-walled and did not include small anatomical structures such as nerve roots, denticulate ligaments and arachnoid trabeculae. Results were compared at nine axial planes …


A Nano-Cheese-Cutter To Directly Measure Interfacial Adhesion Of Freestanding Nano-Fibers, Xin Wang, Johnny F. Najem, Shing Chung Josh Wong, Kai-Tak Wan Apr 2015

A Nano-Cheese-Cutter To Directly Measure Interfacial Adhesion Of Freestanding Nano-Fibers, Xin Wang, Johnny F. Najem, Shing Chung Josh Wong, Kai-Tak Wan

Dr. Shing-Chung Josh Wong

A nano-cheese-cutter is fabricated to directly measure the adhesion between two freestanding nano-fibers. A single electrospun fiber is attached to the free end of an atomic force microscope cantilever, while a similar fiber is similarly prepared on a mica substrate in an orthogonal direction. External load is applied to deform the two fibers into complementary V-shapes, and the force measurement allows the elastic modulus to be determined. At a critical tensile load, “pull-off” occurs when the adhering fibers spontaneously detach from each other, yielding the interfacial adhesion energy. Loading-unloading cycles are performed to investigate repeated adhesion-detachment and surface degradation.


La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen Mar 2015

La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen

Fanglin Chen

Porous yttria-stabilized bismuth oxides (YSB) were investigated as the backbones for La0.85Sr0.15MnO3−#1;(LSM) infiltrated cathodes in intermediate-temperature solid oxide fuel cells. The cathodes were evaluated using anode-supported single cells with scandia-stabilized zirconia as the electrolytes. With humidified H2 as the fuel, the cell showed peak power density of 0.33, 0.52, and 0.74 W cm−2 at 650, 700, and 750°C, respectively. At 650°C, the cell polarization resistance was only 1.38 Ω cm2, <50% of the lowest value previously reported, indicating that YSB is a promising backbone for the LSM infiltrated cathode.


Preparation Of Mesoporous Tin Oxide For Electrochemical Applications, Fanglin Chen, Meilin Liu Mar 2015

Preparation Of Mesoporous Tin Oxide For Electrochemical Applications, Fanglin Chen, Meilin Liu

Fanglin Chen

Mesoporous tin oxide stable up to 500 °C has been prepared for the first time using both cationic and neutral surfactants.