Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Molecular Dynamics Simulations Of Ion Transport Through Electrically Stressed Biological Membranes, Federica Castellani Jul 2021

Molecular Dynamics Simulations Of Ion Transport Through Electrically Stressed Biological Membranes, Federica Castellani

Biomedical Engineering Theses & Dissertations

The cell membrane is a selectively permeable barrier that controls the transport of ions, molecules, and other materials into and out of a cell. The manipulation of the cell membrane permeability is the basis for several biotechnological and biomedical applications, including electroporation. Electroporation (or electropermeabilization) occurs when the application of an external electric pulse causes water intrusion into the membrane interior and the formation of conductive transmembrane electropores. These electropores allow drugs, genetic material, and other normally impermeant molecules to enter a cell. Despite years of study, the complex mechanisms underlying this process are still not well understood. Molecular dynamics …


Moderate Heat-Assisted Gene Electrotransfer For Intradermal Dna Vaccination And Protein Replacement Therapy In The Skin, Chelsea Marie Edelblute Apr 2021

Moderate Heat-Assisted Gene Electrotransfer For Intradermal Dna Vaccination And Protein Replacement Therapy In The Skin, Chelsea Marie Edelblute

Biomedical Sciences Theses & Dissertations

Gene electrotransfer (GET) holds great promise for the delivery of therapeutic agents. The skin serves as an attractive target for GET due to its availability and unique cellular composition. Protein replacement therapy and DNA vaccination are potential applications for intradermal GET. The combination of moderate tissue preheating and GET has been shown to achieve elevated gene expression levels while reducing the necessary applied voltage. In the current work, we utilized a 16-pin multi-electrode array (MEA) and incorporated nine optical fibers, connected to an infrared laser, to pre-heat the tissue to 43°C before application of GET. In a guinea pig model, …


Electroporation Safety Factor Of 300 Nanosecond And 10 Millisecond Defibrillation In Langendorff-Perfused Rabbit Hearts, Johanna U. Neuber, Andrei G. Pakhomov, Christian W. Zemlin Jan 2021

Electroporation Safety Factor Of 300 Nanosecond And 10 Millisecond Defibrillation In Langendorff-Perfused Rabbit Hearts, Johanna U. Neuber, Andrei G. Pakhomov, Christian W. Zemlin

Bioelectrics Publications

Aims

Recently, a new defibrillation modality using nanosecond pulses was shown to be effective at much lower energies than conventional 10 millisecond monophasic shocks in ex vivo experiments. Here we compare the safety factors of 300 nanosecond and 10 millisecond shocks to assess the safety of nanosecond defibrillation.

Methods and results

The safety factor, i.e. the ratio of median effective doses (ED50) for electroporative damage and defibrillation, was assessed for nanosecond and conventional (millisecond) defibrillation shocks in Langendorff-perfused New Zealand white rabbit hearts. In order to allow for multiple shock applications in a single heart, a pair of needle electrodes …


Moderate Heat-Assisted Gene Electrotransfer As A Potential Delivery Approach For Protein Replacement Therapy Through The Skin, Chelsea Edelblute, Cathryn Mangiamele, Richard Heller Jan 2021

Moderate Heat-Assisted Gene Electrotransfer As A Potential Delivery Approach For Protein Replacement Therapy Through The Skin, Chelsea Edelblute, Cathryn Mangiamele, Richard Heller

Bioelectrics Publications

Gene-based approaches for protein replacement therapies have the potential to reduce the number of administrations. Our previous work demonstrated that expression could be enhanced and/or the applied voltage reduced by preheating the tissue prior to pulse administration. In the current study, we utilized our 16-pin multi-electrode array (MEA) and incorporated nine optical fibers, connected to an infrared laser, between each set of four electrodes to heat the tissue to 43 °C. For proof of principle, a guinea pig model was used to test delivery of reporter genes. We observed that when the skin was preheated, it was possible to achieve …


Moderate Heat-Assisted Gene Electrotransfer For Cutaneous Delivery Of A Dna Vaccine Against Hepatitis B Virus, Chelsea Edelblute, Cathryn Mangiamele, Richard Heller Jan 2021

Moderate Heat-Assisted Gene Electrotransfer For Cutaneous Delivery Of A Dna Vaccine Against Hepatitis B Virus, Chelsea Edelblute, Cathryn Mangiamele, Richard Heller

Bioelectrics Publications

An estimated 350 million people are living with chronic Hepatitis B virus (HBV) worldwide. Preventative HBV vaccination in infants has reduced the disease burden; however, insufficient immunization programs and access obstacles leave vulnerable populations at risk for infection in endemic regions. Gene electrotransfer (GET) using a noninvasive multielectrode array (MEA) provides an alternative platform for DNA vaccination in the skin. DNA vaccines are nonlive and nonreplicating and temperature stable unlike their counterparts. In addition, their simple engineering allows them to be manufactured quickly at a low cost. In the current work, we present the combination of GET and moderate heating …


Peculiarities Of Neurostimulation By Intense Nanosecond Pulsed Electric Fields: How To Avoid Firing In Peripheral Nerve Fibers, Vitalii Kim, Emily Gudvangen, Oleg Kondratiev, Luis Redondo, Shu Xiao, Andrei G. Pakhomov Jan 2021

Peculiarities Of Neurostimulation By Intense Nanosecond Pulsed Electric Fields: How To Avoid Firing In Peripheral Nerve Fibers, Vitalii Kim, Emily Gudvangen, Oleg Kondratiev, Luis Redondo, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Intense pulsed electric fields (PEF) are a novel modality for the efficient and targeted ablation of tumors by electroporation. The major adverse side effects of PEF therapies are strong involuntary muscle contractions and pain. Nanosecond-range PEF (nsPEF) are less efficient at neurostimulation and can be employed to minimize such side effects. We quantified the impact of the electrode configuration, PEF strength (up to 20 kV/cm), repetition rate (up to 3 MHz), bi- and triphasic pulse shapes, and pulse duration (down to 10 ns) on eliciting compound action potentials (CAPs) in nerve fibers. The excitation thresholds for single unipolar but not …