Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Engineering

External Link

Selected Works

Keyword
Publication Year
Publication

Articles 1 - 30 of 652

Full-Text Articles in Entire DC Network

Doing 'True Science': The Early History Of The 'Institutum Divi Thomae,' 1935-1951, John Alfred Heitmann Jun 2016

Doing 'True Science': The Early History Of The 'Institutum Divi Thomae,' 1935-1951, John Alfred Heitmann

John A. Heitmann

This essay focuses on the origins and early history of the Institutum Divi Thomae (hereafter referred to as the IDT or Institutum), thus describing one particularly rich episode illustrating the relationship between American Catholicism and science during the middle of the twentieth century. The IDT was established by the Archdiocese of Cincinnati in 1935; its faculty and students, while working in the area of cancer research, published hundreds of scientific and technical papers, developed a number of commercial products, and received considerable publicity in both the religious and secular press during the first two decades of its existence. However, with …


Role Of Diffusive, Photovoltaic, And Thermal Effects In Beam Fanning In Linbo3, Jaw-Jueh Liu, Partha P. Banerjee, Q. W. Song Apr 2016

Role Of Diffusive, Photovoltaic, And Thermal Effects In Beam Fanning In Linbo3, Jaw-Jueh Liu, Partha P. Banerjee, Q. W. Song

Partha Banerjee

We analyze the steady-state (Gaussian) beam fanning in LiNbO3 from the nonlinearly coupled Kukhtarev equations by including both diffusive and photovoltaic effects and by adding the thermal effect in the calculation. There is good agreement between theory and experiment. The results show a symmetric beam-fanning pattern whose size depends on the beam waist and the power. Possible applications of our results in nondestructive testing of material parameters and optical limiting are discussed.


Simulation Of Two-Dimensional Nonlinear Envelope Pulse Dynamics By A Two-Step Spatiotemporal Angular Spectrum Method, H. K. Sim, Adrianus Korpel, Karl E. Lonngren, Partha P. Banerjee Apr 2016

Simulation Of Two-Dimensional Nonlinear Envelope Pulse Dynamics By A Two-Step Spatiotemporal Angular Spectrum Method, H. K. Sim, Adrianus Korpel, Karl E. Lonngren, Partha P. Banerjee

Partha Banerjee

We present an extension of our previous nonlinear beam-simulation method to the propagation and interaction of pulse envelopes. The extra time dimension is applied in the context of a dispersive nonlinear medium that is described by a Klein–Gordon equation with an added cubically nonlinear, self-focusing term. Pulse propagation in this medium is modeled as the evolution of a spatiotemporal spectrum—i.e., the frequency-dependent angular spectrum of the pulse envelope—traversing a sequence of self-induced, thin, weak phase filters. Preliminary simulation experiments show agreement with known behavior in the absence of nonlinearity, confirm the existence of an (apparently unstable) stationary solution, and demonstrate …


Theoretical And Experimental Studies Of Propagation Of Beams Through A Finite Sample Of A Cubically Nonlinear Material, Partha P. Banerjee, Raj M. Misra, M. Maghraoui Apr 2016

Theoretical And Experimental Studies Of Propagation Of Beams Through A Finite Sample Of A Cubically Nonlinear Material, Partha P. Banerjee, Raj M. Misra, M. Maghraoui

Partha Banerjee

Propagation of an externally focused or defocused Gaussian beam in a cubically nonlinear material is studied analytically and experimentally. The theoretical analysis is applied to determine the sign and magnitude of n2 for a material by means of a single-beam experiment with a finite nonlinear sample within which propagational diffraction cannot be neglected. Experimental results for a solution of chlorophyll in ethanol are reported. Based on available theory, an average n2 can be defined for a nonlinearity of thermal origin, and this value is found to be in good agreement with experimental results. Finally, the theoretical analysis and …


On A Simple Derivation Of The Fresnel Diffraction Formula And A Transfer Function Approach To Wave Propagation, Partha P. Banerjee, Ting-Chung Poon Apr 2016

On A Simple Derivation Of The Fresnel Diffraction Formula And A Transfer Function Approach To Wave Propagation, Partha P. Banerjee, Ting-Chung Poon

Partha Banerjee

The Fresnel diffraction formula is straightforwardly obtained by solving a partial differential equation (PDE) for envelope propagation using Fourier transform techniques. The PDE, in turn, can be derived from the dispersion relation of a linear medium by employing a simple operator formalism. The transfer function and impulse response of propagation follows as a spin‐off and is used to solve illustrative problems. Huygens’ principle is visualized as a consequence of the convolution property of linear systems.


Notch Spatial Filtering With An Acousto-Optic Modulator, Partha P. Banerjee, Dongqing Cao, Ting-Chung Poon Apr 2016

Notch Spatial Filtering With An Acousto-Optic Modulator, Partha P. Banerjee, Dongqing Cao, Ting-Chung Poon

Partha Banerjee

The role of acousto-optic (AO) modulators in programmable real-time image processing has recently been demonstrated. For fully investigating the image-processing capabilities of the AO modulator, general techniques to derive spatial transfer functions are needed for a variety of physical situations. We develop a technique to determine the spatial transfer functions numerically for various cases of beam incidence on an AO modulator. Normal incidence and incidence at twice the Bragg angle are investigated as examples for which double-sided and single-sided notch spatial filtering, respectively, are achieved. The observed spatial-filtering characteristics are reconciled with simple intuitive physical arguments.


Nonlinear Transverse Effects In Second-Harmonic Generation, Pawel Pliszka, Partha P. Banerjee Apr 2016

Nonlinear Transverse Effects In Second-Harmonic Generation, Pawel Pliszka, Partha P. Banerjee

Partha Banerjee

We study a three-dimensional model of interaction of fundamental-frequency and second-harmonic beams in a quadratically nonlinear medium. Numerical simulations of the three-dimensional propagation problem in the presence of diffraction and anisotropy are performed under the paraxial approximation. The role of the transverse effects in various regimes is investigated. We demonstrate the effect of phase modulation and an induced nonlinear focusing during the interaction of the fundamental frequency with the generated second harmonic.


Multiwave Coupling In A High-Gain Photorefractive Polymer, Kenji Matsushita, Partha P. Banerjee, S. Ozaki, Daisuke Miyazaki Apr 2016

Multiwave Coupling In A High-Gain Photorefractive Polymer, Kenji Matsushita, Partha P. Banerjee, S. Ozaki, Daisuke Miyazaki

Partha Banerjee

The characteristics of a new high-gain photorefractive polymer composite with a PNP chromophore are investigated. Competition between beam fanning and two-wave coupling (TWC) is predicted and verified experimentally. The intensity dependence of TWC gain is studied. Higher diffraction order and forward phase conjugation in a TWC geometry are observed and explained.


Linear And Nonlinear Propagation In Negative Index Materials, Partha P. Banerjee, George Nehmetallah Apr 2016

Linear And Nonlinear Propagation In Negative Index Materials, Partha P. Banerjee, George Nehmetallah

Partha Banerjee

We analyze linear propagation in negative index materials by starting from a dispersion relation and by deriving the underlying partial differential equation. Transfer functions for propagation are derived in temporal and spatial frequency domains for unidirectional baseband and modulated pulse propagation, as well as for beam propagation. Gaussian beam propagation is analyzed and reconciled with the ray transfer matrix approach as applied to propagation in negative index materials. Nonlinear extensions of the linear partial differential equation are made by incorporating quadratic and cubic terms, and baseband and envelope solitary wave solutions are determined. The conditions for envelope solitary wave solutions …


Application Of Up-Sampling And Resolution Scaling To Fresnel Reconstruction Of Digital Holograms, Logan Williams, George Nehmetallah, Rola Aylo, Partha P. Banerjee Apr 2016

Application Of Up-Sampling And Resolution Scaling To Fresnel Reconstruction Of Digital Holograms, Logan Williams, George Nehmetallah, Rola Aylo, Partha P. Banerjee

Partha Banerjee

Fresnel transform implementation methods using numerical preprocessing techniques are investigated in this paper. First, it is shown that up-sampling dramatically reduces the minimum reconstruction distance requirements and allows maximal signal recovery by eliminating aliasing artifacts which typically occur at distances much less than the Rayleigh range of the object. Second, zero-padding is employed to arbitrarily scale numerical resolution for the purpose of resolution matching multiple holograms, where each hologram is recorded using dissimilar geometric or illumination parameters. Such preprocessing yields numerical resolution scaling at any distance. Both techniques are extensively illustrated using experimental results.


Achieving Enhanced Gain In Photorefractive Polymers By Eliminating Electron Contributions Using Large Bias Fields, C. M. Liebig, S. H. Buller, Partha P. Banerjee, S. A. Basun, Pierre-Alexandre Blanche, J. Thomas, Cory W. Christenson, N. Peyghambarian, Dean R. Evans Apr 2016

Achieving Enhanced Gain In Photorefractive Polymers By Eliminating Electron Contributions Using Large Bias Fields, C. M. Liebig, S. H. Buller, Partha P. Banerjee, S. A. Basun, Pierre-Alexandre Blanche, J. Thomas, Cory W. Christenson, N. Peyghambarian, Dean R. Evans

Partha Banerjee

Photorefractive polymers have been extensively studied for over two decades and have found applications in holographic displays and optical image processing. The complexity of these materials arises from multiple charge contributions, for example, leading to the formation of competing photorefractive gratings. It has been recently shown that in a photorefractive polymer at relatively moderate applied electric fields the primary charge carriers (holes) establish an initial grating, followed by a subsequent competing grating (electrons) resulting in a decreased two-beam coupling and diffraction efficiencies. In this paper, it is shown that with relatively large sustainable bias fields, the two-beam coupling efficiency is …


3d Visualization Using Pulsed And Cw Digital Holographic Tomography Techniques, George Nehmetallah, Partha P. Banerjee, D. Ferree, R. Kephart, Sarat C. Praharaj Apr 2016

3d Visualization Using Pulsed And Cw Digital Holographic Tomography Techniques, George Nehmetallah, Partha P. Banerjee, D. Ferree, R. Kephart, Sarat C. Praharaj

Partha Banerjee

We outline the use of digital holographic tomography to determine the three-dimensional (3D) shapes of falling and static objects, such as lenslets and water droplets. Reconstruction of digitally recorded inline holograms is performed using multiplicative and Radon transform techniques to reveal the exact 3D shapes of the objects.


Computer-Assisted Learning Based On Universal Design, Multimodal Presentation And Textual Linkage, Leyla Zhuhadar Mar 2016

Computer-Assisted Learning Based On Universal Design, Multimodal Presentation And Textual Linkage, Leyla Zhuhadar

Leyla Zhuhadar

Abstract Refining city services is gradually being placed in the hands of the citizens,
or, as in the case of IBM’s initiative, Blet’s build a planet of smarter cities (https://
www-03.ibm.com/press/us/en/pressrelease/35573.wss), at their fingertips. By reducing
cost and gaining control in building smart transportation management systems, IBM
provided a grant to the city of Chicago to reinvigorate Chicago’s K-12 schools and city
college. Similarly, Catherine Bracy (https://www.codeforamerica.org/people/catherinebracy/)
and her team at Code for America are using technology to Bbuild governments
for the people and by the people in the twenty-first century.^ It is evident that smart
cities should accommodate every …


The Effect Of Preceptor Role Effectiveness On Newly Licensed Registered Nurses' Perceived Psychological Empowerment And Professional Autonomy, Channell Watkins, Patricia Hart, Nicole Mareno Feb 2016

The Effect Of Preceptor Role Effectiveness On Newly Licensed Registered Nurses' Perceived Psychological Empowerment And Professional Autonomy, Channell Watkins, Patricia Hart, Nicole Mareno

Nicole Mareno

The first year turnover rate for newly licensed registered nurses is roughly 30% and increases to about 57% in the second year ( Twibell et al., 2012 ). An effective preceptorship has been shown to better facilitate the first year transition (Hodges et al., 2008) and increase retention rates ( Pine and Tart, 2007 ). The purpose of this study was to examine the relationships between newly licensed registered nurses' perceived preceptor role effectiveness, psychological empowerment and professional autonomy. A prospective, cross-sectional, descriptive research design was used. Sixty-nine newly licensed registered nurses were recruited and surveyed. Newly licensed registered nurses were found …


Cracking The Shell To Student Learning: An Innovative Instructional Approach, John Olson, Paul Savory Dec 2015

Cracking The Shell To Student Learning: An Innovative Instructional Approach, John Olson, Paul Savory

John Olson

Management and Industrial Engineering courses is motivating students to learn and apply the quantitative and managerial aspects of the material. The aim of our educational methodology is to not only teach and reinforce the core principles of the disciplines, but to have students develop a set of skills that will make them competitive in the classroom and the workforce. Teaching is why a university exists. As a result, the objective of our instructional approach is to attract and retain dedicated students to the fields of Operations Management and Industrial Engineering and to keep those students competitive and in focus with …


Road Rescue Implements A Continuous Process Improvement Framework, John Olson, Paul Savory Dec 2015

Road Rescue Implements A Continuous Process Improvement Framework, John Olson, Paul Savory

John Olson

Continuous improvement programs traditionally focus on making small incremental improvements to a system. Unfortunately, their success can be limited due to the rapid changing environment within which most small companies operate. Improvement efforts should be flexible enough to capitalize on incremental and radical changes to a system. This paper presents a case analysis of how Road Rescue, an ambulance manufacturer, uses a continuous improvement framework to capitalize on both radical and incremental improvement opportunities. Results include a 10% increase in throughput, reduced cycle time of 44%, increased customer satisfaction, and higher quality.


Constrained Biogeography-Based Optimization For Invariant Set Computation,, Arpit Shah, Daniel Simon, Hanz Richter Dec 2015

Constrained Biogeography-Based Optimization For Invariant Set Computation,, Arpit Shah, Daniel Simon, Hanz Richter

Hanz Richter

We discuss the application of biogeography-based optimization (BBO) to invariant set approximation. BBO is a recently developed evolutionary algorithm (EA) that is motivated by biogeography, which is the study and science of the geographical migration of biological species. Invariant sets are sets in the state space of a dynamic system such that if the state begins in the set, then it remains in the set for all time. Invariant sets have applications in many constrained control problems, and their computation amounts to a constrained optimization problem. We therefore frame the invariant set computation problem as a constrained optimization problem, and …


Combining Dynamic Stretch And Tunable Stiffness To Probe Cell Mechanobiology In Vitro, Angela Quinlan, Leslie Sierad, Andrew Capulli, Laura Firstenberg, Kristen Billiar Dec 2015

Combining Dynamic Stretch And Tunable Stiffness To Probe Cell Mechanobiology In Vitro, Angela Quinlan, Leslie Sierad, Andrew Capulli, Laura Firstenberg, Kristen Billiar

Kristen L. Billiar

Cells have the ability to actively sense their mechanical environment and respond to both substrate stiffness and stretch by altering their adhesion, proliferation, locomotion, morphology, and synthetic profile. In order to elucidate the interrelated effects of different mechanical stimuli on cell phenotype in vitro, we have developed a method for culturing mammalian cells in a two-dimensional environment at a wide range of combined levels of substrate stiffness and dynamic stretch. Polyacrylamide gels were covalently bonded to flexible silicone culture plates and coated with monomeric collagen for cell adhesion. Substrate stiffness was adjusted from relatively soft (G' = 0.3 kPa) to …


A Framework For Control Of Robots With Energy Regeneration, Hanz Richter Dec 2015

A Framework For Control Of Robots With Energy Regeneration, Hanz Richter

Hanz Richter

This paper focuses on robot control problems where energy regeneration is an explicit consideration, and it proposes a methodology for modeling and control design of regenerative motion control systems. The generic model consists of a robotic manipulator where some joints are actively controlled and the remaining joints are energetically self-contained and semi-actively controlled. The model can capture various electromechanical and hydraulic actuator configurations for industrial robots and powered human-assist devices. The basic control approach consists of three steps. First, a virtual control design is conducted by any suitable means. Then, virtual control inputs are enacted by a matching law for …


Magnetic Transitions In Disordered Gdal2, D. Williams, Paul Shand, Thomas Pekarek, Ralph Skomski, Valeri Petkov, Diandra Leslie-Pelecky Dec 2015

Magnetic Transitions In Disordered Gdal2, D. Williams, Paul Shand, Thomas Pekarek, Ralph Skomski, Valeri Petkov, Diandra Leslie-Pelecky

Thomas M. Pekarek

The role of disorder in magnetic ordering transitions is investigated using mechanically milled GdAl2. Crystalline GdAl2 is a ferromagnet while amorphous GdAl2 is a spin glass. Nanostructured GdAl2 shows a paramagnetic-to-ferromagnetic transition and glassy behavior, with the temperature and magnitude of each transition dependent on the degree and type of disorder. Disorder is parametrized by a Gaussian distribution of Curie temperatures TC with mean TC and breadth Δ TC. A nonzero coercivity is observed at temperatures more than 20 K above the highest TC of any known Gd-Al phase; however, the coercivity decreases with decreasing temperature over the same temperature …


Fgf2-Induced Effects On Transcriptome Associated With Regeneration Competence In Adult Human Fibroblasts, Olga Kashpur, David Lapointe, Sakthikumar Ambady, Elizabeth Ryder, Tanja Dominko Dec 2015

Fgf2-Induced Effects On Transcriptome Associated With Regeneration Competence In Adult Human Fibroblasts, Olga Kashpur, David Lapointe, Sakthikumar Ambady, Elizabeth Ryder, Tanja Dominko

Sakthikumar Ambady

BACKGROUND: Adult human fibroblasts grown in low oxygen and with FGF2 supplementation have the capacity to tip the healing outcome of skeletal muscle injury - by favoring regeneration response in vivo over scar formation. Here, we compare the transcriptomes of control adult human dermal fibroblasts and induced regeneration-competent (iRC) fibroblasts to identify transcriptional changes that may be related to their regeneration competence. RESULTS: We identified a unique gene-expression profile that characterizes FGF2-induced iRC fibroblast phenotype. Significantly differentially expressed genes due to FGF2 treatment were identified and analyzed to determine overrepresented Gene Ontology terms. Genes belonging to extracellular matrix components, adhesion …


Getting To The Root Of Bacterial Hairs: What Is “S”?, Rebecca Gaddis, Samantha O'Conner, Evan Anderson, Terri Camesano, Nancy Burnham Dec 2015

Getting To The Root Of Bacterial Hairs: What Is “S”?, Rebecca Gaddis, Samantha O'Conner, Evan Anderson, Terri Camesano, Nancy Burnham

Nancy A. Burnham

An atomic force microscope (AFM) was used to measure the steric forces of lipopolysaccharides (LPS) on the biofilm-forming bacteria, Pseudomonas aeruginosa. It is well known that LPS play a vital role in biofilm formation. These forces were characterized with a modified version of the Alexander and de Gennes (AdG) model for polymers, which is a function of equilibrium brush length, L, probe radius, R, temperature, T, separation distance, D, and an indefinite density variable, s. This last parameter was originally distinguished by de Gennes as the root spacing or mesh spacing depending upon the type of polymer adhesion; however since …


Characteristics Of Power Quality Disturbance Levels In Australia, Sean Elphick, Vic Smith, Vic Gosbell, Robert Barr Dec 2015

Characteristics Of Power Quality Disturbance Levels In Australia, Sean Elphick, Vic Smith, Vic Gosbell, Robert Barr

Robert Barr

The Australian Long Term Power Quality Survey (LTNPQS) now covers 2,000 sites with a range of different characteristics including strength (related to fault level), line construction and dominant load type. This paper details the latest outcomes of the LTNPQS project in terms of both disturbance levels and reporting methods. A comparison of the differences between voltage, unbalance and harmonic THD levels at strong (close to transformer) and weak (towards the end of LV feeders) sites has been performed and significant differences have been found. A multivariable linear regression study has been undertaken in order to investigate the correlation between site …


Disorder-Induced Depression Of The Curie Temperature In Mechanically Milled Gdal2, Marco Morales Torres, D. Williams, Paul Shand, C. Stark, Thomas Pekarek, L. Yue, Valeri Petkov, Diandra Leslie-Pelecky Dec 2015

Disorder-Induced Depression Of The Curie Temperature In Mechanically Milled Gdal2, Marco Morales Torres, D. Williams, Paul Shand, C. Stark, Thomas Pekarek, L. Yue, Valeri Petkov, Diandra Leslie-Pelecky

Thomas M. Pekarek

The effect of disorder on the ferromagnetic transition is investigated in mechanically milled GdAl2. GdAl2is a ferromagnet when crystalline and a spin glass when amorphous. Mechanical milling progressively disorders the alloy, allowing observation of the change from ferromagnetic to a disordered magnetic state. X-ray diffraction and pair-distribution-function analysis are used to determine the grain size, lattice parameter, and mean-squared atomic displacements. The magnetization as a function of temperature is described by a Gaussian distribution of Curie temperatures. The mean Curie temperature decreases with decreasing lattice parameter, where lattice parameter serves as a measure of defect concentration. Two different rates of …


A Case Study: Data Management In Biomedical Engineering, Glenn Gaudette, Donna Kafel Dec 2015

A Case Study: Data Management In Biomedical Engineering, Glenn Gaudette, Donna Kafel

Glenn R. Gaudette

In a biomedical engineering lab at Worcester Polytechnic Institute, co-author Dr. Glenn R. Gaudette and his research team are investigating the effects of stem cell therapy on the regeneration of function in damaged cardiac tissue in laboratory rats. Each instance of stem cell experimentation on a rat yields hundreds of data sets that must be carefully captured, documented and securely stored so that the data will be easily accessed and retrieved for papers, reports, further research, and validation of findings, while meeting NIH guidelines for data sharing. After a brief introduction to the bioengineering field and stem cell research, this …


Science Panel Discussion Presentation: "Data Management In Biomedical Engineering: Needs And Implementation", Glenn Gaudette Dec 2015

Science Panel Discussion Presentation: "Data Management In Biomedical Engineering: Needs And Implementation", Glenn Gaudette

Glenn R. Gaudette

Glenn Gaudette, PhD, is an Associate Professor, Department of Biomedical Engineering, Worcester Polytechnic Institute. He discussed data management in his research laboratory, which is focused on regenerating mechanical and electrophysiological function in hearts with cardiovascular disease.


Can Declared Strategy Voting Be An Effective Instrument For Group Decision-Making?, Lorrie Cranor Dec 2015

Can Declared Strategy Voting Be An Effective Instrument For Group Decision-Making?, Lorrie Cranor

Lorrie F Cranor

The goal of this research is to determine whether declared strategy voting can be an effective tool for group decision-making. Declared strategy voting is a novel group decision-making procedure in which preference is specified using voting strategies - first-order mathematical functions that specify a choice in terms of zero or more parameters. This research will focus on refining the declared strategy voting concept, developing an accessible implementation of declared strategy voting that can be used for mock elections, assessing the potential impacts of declared strategy voting, and evaluating the effectiveness of declared strategy voting for group decision-making. This proposal describes …


Design And Implementation Of A Practical Security-Conscious Electronic Polling System, Lorrie Cranor, Ron Cytron Dec 2015

Design And Implementation Of A Practical Security-Conscious Electronic Polling System, Lorrie Cranor, Ron Cytron

Lorrie F Cranor

We present the design and implementation of Sensus, a practical, secure and private system for conducting surveys and elections over computer networks. Expanding on the work of Fujioka, Okamoto, and Ohta, Sensus uses blind signatures to ensure that only registered voters can vote and that each registered voter only votes once, while at the same time maintaining voters' privacy. Sensus allows voters to verify independently that their votes were counted correctly, and anonymously challenge the results should their votes be miscounted. We outline seven desirable properties of voting systems and show that Sensus satisfied these properties well, in some cases …


Imaging Diffractometer With Holographic Encoding Enhancements For Laser Sensing And Characterization, Joesph Binford, Bradley Duncan, Jack Parker, Elizabeth Beecher, Mark Delong Nov 2015

Imaging Diffractometer With Holographic Encoding Enhancements For Laser Sensing And Characterization, Joesph Binford, Bradley Duncan, Jack Parker, Elizabeth Beecher, Mark Delong

Bradley D. Duncan

What is believed to be a novel holographic optical encoding scheme has been developed to enhance the performance of laser sensors designed for the measurement of wavelength and angular trajectory. A prototype holographic imaging diffractometer has been created to reconstruct holographic cueing patterns superimposed in the focal plane of wide-angle scene imagery. Based on experimental pattern metric measurements at the focal plane, a theoretical model is used to compute the laser source wavelength and its apparent propagation direction within the sensor's field of view. The benefits of incorporating holographic enhancements within an imager-based sensor architecture are discussed.


Optical Sparse Aperture Imaging, Nicholas Miller, Matthew Dierking, Bradley Duncan Nov 2015

Optical Sparse Aperture Imaging, Nicholas Miller, Matthew Dierking, Bradley Duncan

Bradley D. Duncan

The resolution of a conventional diffraction-limited imaging system is proportional to its pupil diameter. A primary goal of sparse aperture imaging is to enhance resolution while minimizing the total light collection area; the latter being desirable, in part, because of the cost of large, monolithic apertures. Performance metrics are defined and used to evaluate several sparse aperture arrays constructed from multiple, identical, circular subapertures. Subaperture piston and∕or tilt effects on image quality are also considered. We selected arrays with compact nonredundant autocorrelations first described by Golay. We vary both the number of subapertures and their relative spacings to arrive at …