Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

PDF

Ole J Mengshoel

Selected Works

Verification and Validation

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann M. Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito Jun 2015

Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann M. Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito

Ole J Mengshoel

For unmanned aerial systems (UAS) to be successfully deployed and integrated within the national airspace, it is imperative that they possess the capability to effectively complete their missions without compromising the safety of other aircraft, as well as persons and property on the ground. This necessity creates a natural requirement for UAS that can respond to uncertain environmental conditions and emergent failures in real-time, with robustness and resilience close enough to those of manned systems. We introduce a system that meets this requirement with the design of a real-time onboard system health management (SHM) capability to continuously monitor sensors, software, …


Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito Sep 2013

Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito

Ole J Mengshoel

Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and …


Software Health Management With Bayesian Networks, Johann Schumann, Timmy Mbaya, Ole J. Mengshoel, Knot Pipatsrisawat, Ashok Srivastava, Arthur Choi, Adnan Darwiche May 2013

Software Health Management With Bayesian Networks, Johann Schumann, Timmy Mbaya, Ole J. Mengshoel, Knot Pipatsrisawat, Ashok Srivastava, Arthur Choi, Adnan Darwiche

Ole J Mengshoel

Software Health Management (SWHM) is an emerging field which addresses the critical need to detect, diagnose, predict, and mitigate adverse events due to software faults and failures. These faults could arise for numerous reasons including coding errors, unanticipated faults or failures in hardware, or problematic interactions with the external environment. This paper demonstrates a novel approach to software health management based on a rigorous Bayesian formulation that monitors the behavior of software and operating system, performs probabilistic diagnosis, and provides information about the most likely root causes of a failure or software problem. Translation of the Bayesian network model into …


Multi-Focus And Multi-Window Techniques For Interactive Network Exploration, Priya K. Sundararajan, Ole J. Mengshoel, Ted Selker Jan 2013

Multi-Focus And Multi-Window Techniques For Interactive Network Exploration, Priya K. Sundararajan, Ole J. Mengshoel, Ted Selker

Ole J Mengshoel

Networks analysts often need to compare nodes in different parts of a network. When zoomed to fit a computer screen, the detailed structure and node labels of even a moderately-sized network (say, with 500 nodes) can become invisible or difficult to read. Still, the coarse network structure typically remains visible, and helps orient an analyst’s zooming, scrolling, and panning operations. These operations are very useful when studying details and reading node labels, but in the process of zooming in on one network region, an analyst may lose track of details elsewhere. To address such problems, we present in this paper …


Verification And Validation Of System Health Management Models Using Parametric Testing, Erik Reed, Johann Schumann, Ole J. Mengshoel Feb 2011

Verification And Validation Of System Health Management Models Using Parametric Testing, Erik Reed, Johann Schumann, Ole J. Mengshoel

Ole J Mengshoel

System Health Management (SHM) systems have found their way into many safety-critical aerospace and industrial applications. A SHM system processes readings from sensors throughout the system and uses a Health Management (HM) model to detect and identify potential faults (diagnosis) and to predict possible failures in the near future (prognosis). It is essential that a SHM system, which monitors a safety-critical component, must be at least as reliable and safe as the component itself—false alarms or missed adverse events can potentially result in catastrophic failures. The SHM system including the HM model, a piece of software, must therefore undergo rigorous …