Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

University of South Florida

Cobalt

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Aldehydic C-H Amination Reactions Via Co(Ii)-Based Metalloradical Catalysis And Construction Of Novel Chiral Meso-Amidoporphyrin Ligands, Christopher Lee Lizardi Mar 2015

Aldehydic C-H Amination Reactions Via Co(Ii)-Based Metalloradical Catalysis And Construction Of Novel Chiral Meso-Amidoporphyrin Ligands, Christopher Lee Lizardi

USF Tampa Graduate Theses and Dissertations

Medium-sized organic ring synthesis poses a seemingly insurmountable challenge, and because of this it is a field under immense investigation. Heterocyclic containing medium-sized rings are common structural motifs in nature, which has caused researchers to investigate their potential biological activity and properties as materials. This research focused on the grand challenge of medium-sized heterocyclic ring synthesis, providing the synthesis community with new tools to generate these highly evasive products, while elucidating energetic and geometric properties of one of Nature's least understood organic ring systems.

Cobalt(II)-Amidoporphyrins, [Co(D2-Por)], are an emerging class of metalloradical catalysts (MRC) which can facilitate …


Co(Ii) Based Metalloradical Catalysis: Carbene And Nitrene Transfer Reactions, Joseph B. Gill Nov 2014

Co(Ii) Based Metalloradical Catalysis: Carbene And Nitrene Transfer Reactions, Joseph B. Gill

USF Tampa Graduate Theses and Dissertations

Radical chemistry has attracted a large amount of research interest over the last few decades and radical reactions have recently been recognized as powerful tools for organic synthesis. The synthetic applications of radicals have been demonstrated in many fields, including in the synthesis of complex natural products. Radical reactions have a number of inherent synthetic advantages over their ionic counterparts. For example, they typically proceed at fast reaction rates under mild and neutral conditions in a broad spectrum of solvents and show significantly greater functional group tolerance. Furthermore, radical processes have the capability of performing in a cascade fashion, allowing …


Asymmetric Nitrene Transfer Reactions With Azides Via Co(Ii)-Based Metalloradical Catalysis (Mrc), Jingran Tao Jan 2013

Asymmetric Nitrene Transfer Reactions With Azides Via Co(Ii)-Based Metalloradical Catalysis (Mrc), Jingran Tao

USF Tampa Graduate Theses and Dissertations

Asymmetric nitrene transfer reactions via metalloradical catalysis (MRC) with

azides has attracted research interest because of its fundamental and practical importance.

The resulting nitrogen-containing units are recurrent motifs in biologically important

molecules and can serve as versatile precursors in organic synthesis.

The [Co(D2-Por*)] have emerged as a new class of catalysts for asymmetric

aziridination and C-H amination. These metalloradical catalysts have been shown to be

highly effective for the asymmetric intermolecular aziridination of a broad scope of

substrates with different classes of azides with excellent to good enantioselectivity. The

intramolecular C-H amination utilizing various azides can allow for the construction …


Novel Blends Of Sulfur-Tolerant Water-Gas Shift Catalysts For Biofuel Applications, Timothy Michael Roberge Jan 2012

Novel Blends Of Sulfur-Tolerant Water-Gas Shift Catalysts For Biofuel Applications, Timothy Michael Roberge

USF Tampa Graduate Theses and Dissertations

As traditional sources of energy become depleted, significant research interest has gone into conversion of biomass into renewable fuels. Biomass-derived synthesis gas typically contains concentrations of approximately 30 to 600 ppm H2S in stream. H2S is a catalyst poison which adversely affects downstream processing of hydrogen for gas to liquid plants. The water-gas shift reaction is an integral part of converting CO and steam to H2 and CO2. Currently, all known water-gas shift catalysts deactivate in sulfur concentrations typical of biomass-derived synthesis gas. Novel catalysts are needed to remain active in the presence of sulfur concentrations in order to boost …


Asymmetric Intra- And Intermolecular Cyclopropanation By Co(Ii)- Based Metalloradical Catalysis, Xue Xu Jan 2012

Asymmetric Intra- And Intermolecular Cyclopropanation By Co(Ii)- Based Metalloradical Catalysis, Xue Xu

USF Tampa Graduate Theses and Dissertations

Metal-catalyzed cyclopropanation of olefins with diazo reagents has attracted research interest because of its fundamental and practical importance. The resulting cyclopropyl units are recurrent motifs in biologically important molecules and can serve as versatile precursors in organic synthesis. Since they were first introduced in 2004, Co(II) complexes of D2-symmetric chiral amidoporphyrins [Co(D2-Por*)] have emerged as a new class of catalysts for asymmetric cyclopropanation. These metalloradical catalysts have been shown to be highly effective for asymmetric intermolecular cyclopropanation of a broad scope of substrates with different classes of carbene sources, particularly including electron-deficient olefins and acceptor/acceptor-substituted …


Design Of Colloidal Composite Catalysts For Co2 Photoreduction And For Co Oxidation, Bijith D. Mankidy Jan 2012

Design Of Colloidal Composite Catalysts For Co2 Photoreduction And For Co Oxidation, Bijith D. Mankidy

USF Tampa Graduate Theses and Dissertations

In this doctoral dissertation, novel colloidal routes were used to synthesize nanomaterials with unique features. We have studied the impact of nanoparticle size of catalyst, role of high surface area of a photocatalyst, and the effect of varying elemental composition of co-catalytic nanoparticles in combination with core-shell plasmonic nanoparticles. We have demonstrated how physical and chemical characteristics of nanomaterials with these unique features play a role in catalytic reactions, specifically the oxidation of CO and the photoreduction of CO2. The first objective of this doctoral dissertation involved the preparation of CoO nanoparticles with discrete nanoparticles sizes (1-14 nm) using a …