Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Selective Oxidation Of Alkenes In Air Catalyzed By Mn3o4 Nanoparticles, Brojo Kishor Shachib Dhali Dec 2021

Selective Oxidation Of Alkenes In Air Catalyzed By Mn3o4 Nanoparticles, Brojo Kishor Shachib Dhali

Dissertations and Theses

Catalytic oxidation is a process where compounds are oxidized using catalysts. Solid catalysts exhibit several advantages over homogeneous systems, such as catalyst recovery and excellent stability. Various supported transition-metal oxides (for example: CuO, ZnO, CeO2, Fe2O3 and WO3), metal nanoparticles (for example: Pd and Ru) and polyoxometalate clusters (for example: [W10O32]4-, [Mn2ZnW(ZnW9O34)2]10- and [XW12O40]n- (X = P, Si)) have been applied to selective oxidation of organic compounds, but high associated product conversion still remains a challenge. Recently, a number of materials containing Mn3O4 have been used successfully in different catalytic applications, such as degradation of phenols, reduction of nitrobenzenes, and …


Suzuki Coupling Catalyzed By (8-(Dimesitylboryl)Quinoline)Palladium(0) Species: A Theoretical Analysis, Haley S. Rust May 2021

Suzuki Coupling Catalyzed By (8-(Dimesitylboryl)Quinoline)Palladium(0) Species: A Theoretical Analysis, Haley S. Rust

Honors Thesis

The Suzuki reaction is a catalyzed cross-coupling reaction which is of upmost importance in the formation of carbon-carbon (C-C) bonds in modern organic synthesis. Recently a new catalyst including an 8-(dimesitylboryl)quinoline for the coupling of aryl halides with phenylboronic acids was synthetized. We synthesized ligand that includes a frustrated Lewis pair, (quinolin-8-yl)dimesitylborane (DMBQ), complexed it with group X metals (nickel (Ni), palladium (Pd), and platinum (Pt)), and studied the process of oxidative addition with carbon-fluorine (C-F) bonds and activation towards Suzuki coupling. Mayer bond analysis and electron localization function maps showed a bond between the boron center in the ligand …


Electronic Structure And Dynamics Of Uranyl-Peroxide Species, Ethan T. Hare May 2021

Electronic Structure And Dynamics Of Uranyl-Peroxide Species, Ethan T. Hare

Honors Thesis

Uranyl-peroxide nanocapsules are a unique family of self-assembled actinide species. Uranyl ions rapidly self-assemble in basic peroxidic media through a myriad of reactions to coalesce into a single nanocapsule that includes both peroxide and hydroxide bridging groups between the uranyl moieties. A wide variety of capsules can be formed, and it has been proposed that square and pentagonal building blocks assemble prior to nanocapsule formation. We have studied the speciation of the pentagonal 2) uranyl-peroxide nanocapsule building blocks using density functional theory calculations. We predicted the most favorable speciation pathways for the self-assembly of the building blocks prior to cluster …


Nitro Group Reduction For Use In Organic, Cathodic Materials, Brock G. Goeden Apr 2021

Nitro Group Reduction For Use In Organic, Cathodic Materials, Brock G. Goeden

Honors Thesis

The industrial demand for higher capacity, light-weight battery materials has skyrocketed in recent years due to heavy investments in portable electronics, electronic vehicles, and renewable energy sources. However, rechargeable battery technology has seen little improvement since the invention of the Lithium-Ion battery in the 1980s. The low energy density of the traditionally utilized LiCoO2 cathodic material (specific capacity: 272 mAh g-1), has limited its potential to meet these increasing demands. To solve this problem, our research group is investigating new types of lightweight, organic, polymeric materials with conductive backbones as a possible replacement for the cathodic materials in Lithium-Ion batteries. …