Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

University of Tennessee, Knoxville

Chloroplast

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Regulation Of Plasmodesmata By Specialized Metabolites Glucosinolates In Arabidopsis Thaliana, Jessica C. Fernandez May 2021

Regulation Of Plasmodesmata By Specialized Metabolites Glucosinolates In Arabidopsis Thaliana, Jessica C. Fernandez

Doctoral Dissertations

Communication is an essential component to all living organisms. In

plants, the additional cell wall surrounding each cell adds a layer of complexity

not observed in animals. To overcome the literal wall separating cells, plants

have evolved specialized pores to connect adjacent cells. Plasmodesmata (PD)

allow plants to have a continuous cytoplasm between cells. Although

plasmodesmata may appear simple and lack regulation, their structural

components and their regulatory machinery is complex and not well understood.

Organelle-to-nucleus-to-plasmodesmata signaling (ONPS) have been worked as

a leading model for a possible regulatory mechanism. Many of the details of

organelle-to-nucleus retrograde signaling pathways have …


Iojap: Morphological And Physiological Phenotype Characterization In Arabidopsis, Thomas Jay Payne Dec 2020

Iojap: Morphological And Physiological Phenotype Characterization In Arabidopsis, Thomas Jay Payne

Doctoral Dissertations

IOJAP protein is found in all organisms that contain a ribosome of bacterial origin. The majority of studies suggest that IOJAP plays a role in translation, although this has yet to be thoroughly investigated in plants. Using Arabidopsis thaliana, an extensive phenotype characterization of iojap mutants was performed. Many processes of plant growth were slightly impaired at optimal temperature (22˚C) but became severely hindered at low temperature (12˚C and 4˚C). These cold temperature defects manifested in an overall reduction of plant growth as well as variegation, chlorosis, leaf hyponasty, as well as reduced maximum quantum yield (Fv/F …


Decoding The Cellular Zipcode: Functional Analysis Of Transit Peptide Motifs And Mechanistic Implications In Plastid Targeting And Import, Kristen N. Holbrook Aug 2016

Decoding The Cellular Zipcode: Functional Analysis Of Transit Peptide Motifs And Mechanistic Implications In Plastid Targeting And Import, Kristen N. Holbrook

Doctoral Dissertations

Eukaryotic organisms are defined by their compartmentalization and various organelles. The membranes that define these organelles require complex nanomachines (known as translocons) to selectively mediate the import of proteins from the cytosol where they are synthesized into the organelle. The plastid, (specifically the chloroplast) which is characteristic of plant cells, possibly represents the most complex system of protein sorting, requiring many different translocons located in the three membranes found in this organelle. Despite having a small genome, the vast majority of plastid-localized proteins are nuclear-encoded and must be post-translationally imported from the cytosol. These proteins are encoded as a larger …


Dynamics Of The Toc Gtpases: Modulation By Nucleotides And Transit Peptides Reveal A Mechanism For Chloroplast Protein Import, Lovett Evan Reddick May 2010

Dynamics Of The Toc Gtpases: Modulation By Nucleotides And Transit Peptides Reveal A Mechanism For Chloroplast Protein Import, Lovett Evan Reddick

Doctoral Dissertations

The chloroplast is the green organelle in the plant cell responsible for harvesting energy from sunlight and converting it into sugars and ATP. Origins of this organelle can be traced back to an endosymbiotic event in which a primitive eukaryotic cell capable of oxidative phosphorylation engulfed a free-living cyanobacterium capable of photosynthetic respiration (1). Immediately following this event the details are not clear, however what is known is that over the course of evolution, the engulfed cyanobacteria relinquished approximately 97% of its protein coding sequences to the host cell nucleus, thus making the newly formed chloroplast reliant on its host …