Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

University of Massachusetts Amherst

2018

Arabidopsis thaliana

Articles 1 - 1 of 1

Full-Text Articles in Entire DC Network

In Vitro S-Glutathionylation Of S-Nitrosoglutathione Reductase From Arabidopsis Thaliana And Phenotype Determination Of Sensitive To Formaldehyde 1 Knockout Strains Of Saccharomyces Cerevisiae, Ian Truebridge Apr 2018

In Vitro S-Glutathionylation Of S-Nitrosoglutathione Reductase From Arabidopsis Thaliana And Phenotype Determination Of Sensitive To Formaldehyde 1 Knockout Strains Of Saccharomyces Cerevisiae, Ian Truebridge

Masters Theses

Cells are constantly exposed to different stresses – one being redox stress, which is induced by metal, reactive oxygen species and reactive nitrogen species. S-nitrosoglutathione reductase (GSNOR) helps modulate redox stress by two different mechanisms – either by reducing S-nitrosoglutathione (GSNO) to oxidized glutathione (GSSG) or by oxidizing hydroxymethyl glutathione (HMGSH), a biproduct of glutathione and formaldehyde, to formic acid. GSNO has the potential to posttranslational modify proteins in two different manners, either by S-nitrosation or by S-glutathionylation. Interestingly, GSNOR can be modified by its substrate GSNO, either by S-nitrosation, which has previously been reported, or, as discussed in this …