Open Access. Powered by Scholars. Published by Universities.®

Statistical Models Commons

Open Access. Powered by Scholars. Published by Universities.®

1,343 Full-Text Articles 1,994 Authors 758,993 Downloads 155 Institutions

All Articles in Statistical Models

Faceted Search

1,343 full-text articles. Page 5 of 52.

Bayesian Structural Time Series Methods For Modeling Cattle Body Temperature In Heat-Stressed Animals, Lacey Quandt 2023 Murray State University

Bayesian Structural Time Series Methods For Modeling Cattle Body Temperature In Heat-Stressed Animals, Lacey Quandt

Murray State Theses and Dissertations

Climate change has had devastating effects globally, most commonly talked about during natural disasters and rising temperatures. Notably, the climate concern is turning towards agriculture and livestock. With rising temperatures, the prolonged amount of heat stress put on animals, specifically cattle, is becoming more apparent. Heat stress has been linked to a reduction in cattle growing and fattening, feed intake, productivity, reproduction, and fertility; increased heart rates and respiration; changes in behavior; and mortality in severe cases. There are abatement strategies put in place to lower heat stress in cattle, such as improvements in shading and cooling, nutritional management, and …


The Impact Of Subjective Risk Analysis On Real Estate Prices In The Nisqually Region Following The 2001 Nisqually Earthquake, Ryan Espedal 2023 Central Washington University

The Impact Of Subjective Risk Analysis On Real Estate Prices In The Nisqually Region Following The 2001 Nisqually Earthquake, Ryan Espedal

All Master's Theses

Earthquakes are an environmental hazard that pose great risks to communities almost every day. With earthquakes, the main cause of concern is physical destruction of property, however, there are also psychological effects that are researched and discussed much less. In 2001, the Nisqually area of western Washington experienced a substantial earthquake that produced minimal physical damage but caused a significant decrease in real estate prices. Studying single-family homes from 1986-2012, this research utilizes hedonic property models to measure the change in consumer’s subjective risk calculations with reference to real estate purchases after the Nisqually earthquake, measure the relationship between earthquake …


The Birds And The Trees: Quantifying The Drivers Of Whitebark Pine Decline And Clark's Nutcracker Habitat Use In Glacier National Park, Vladimir Kovalenko 2023 The University Of Montana

The Birds And The Trees: Quantifying The Drivers Of Whitebark Pine Decline And Clark's Nutcracker Habitat Use In Glacier National Park, Vladimir Kovalenko

Graduate Student Theses, Dissertations, & Professional Papers

Whitebark pine (Pinus albicaulis), recently listed as threatened under the Endangered Species Act, is in steep decline in Glacier National Park, Montana, USA due to the non-native pathogen Cronartium ribicola, causal agent of the fatal disease white pine blister rust. A sample of the park’s population suggests that approximately 70 percent of whitebark pines have died, while 65 percent of the remaining trees are infected. Using landscape and climate variables, we show how geographic location, elevation, aspect, solar radiation, relative humidity, and snowpack interact with tree diameter to affect mortality, disease incidence, cone production, and regeneration. We also examine how …


High Dimensional Data Analysis: Variable Screening And Inference, lei fang 2023 University of Kentucky

High Dimensional Data Analysis: Variable Screening And Inference, Lei Fang

Theses and Dissertations--Statistics

This dissertation focuses on the problem of high dimensional data analysis, which arises in many fields including genomics, finance, and social sciences. In such settings, the number of features or variables is much larger than the number of observations, posing significant challenges to traditional statistical methods.

To address these challenges, this dissertation proposes novel methods for variable screening and inference. The first part of the dissertation focuses on variable screening, which aims to identify a subset of important variables that are strongly associated with the response variable. Specifically, we propose a robust nonparametric screening method to effectively select the predictors …


Application Of Sentiment Analysis And Machine Learning Techniques To Predict Daily Cryptocurrency Price Returns, Edward Wu 2023 Claremont Colleges

Application Of Sentiment Analysis And Machine Learning Techniques To Predict Daily Cryptocurrency Price Returns, Edward Wu

CMC Senior Theses

This paper examines the effects of social media sentiment relating to Bitcoin on the daily price returns of Bitcoin and other popular cryptocurrencies by utilizing sentiment analysis and machine learning techniques to predict daily price returns. Many investors think that social media sentiment affects cryptocurrency prices. However, the results of this paper find that social media sentiment relating to Bitcoin does not add significant predictive value to forecasting daily price returns for each of the six cryptocurrencies used for analysis and that machine learning models that do not assume linearity between the current day price return and previous daily price …


Statistical Methods For Gene Selection And Genetic Association Studies, Xuewei Cao 2023 Michigan Technological University

Statistical Methods For Gene Selection And Genetic Association Studies, Xuewei Cao

Dissertations, Master's Theses and Master's Reports

This dissertation includes five Chapters. A brief description of each chapter is organized as follows.

In Chapter One, we propose a signed bipartite genotype and phenotype network (GPN) by linking phenotypes and genotypes based on the statistical associations. It provides a new insight to investigate the genetic architecture among multiple correlated phenotypes and explore where phenotypes might be related at a higher level of cellular and organismal organization. We show that multiple phenotypes association studies by considering the proposed network are improved by incorporating the genetic information into the phenotype clustering.

In Chapter Two, we first illustrate the proposed GPN …


Utilizing Markov Chains To Estimate Allele Progression Through Generations, Ronit Gandhi 2023 University of Nebraska - Lincoln

Utilizing Markov Chains To Estimate Allele Progression Through Generations, Ronit Gandhi

Honors Theses

All populations display patterns in allele frequencies over time. Some alleles cease to exist, while some grow to become the norm. These frequencies can shift or stay constant based on the conditions the population lives in. If in Hardy-Weinberg equilibrium, the allele frequencies stay constant. Most populations, however, have bias from environmental factors, sexual preferences, other organisms, etc. We propose a stochastic Markov chain model to study allele progression across generations. In such a model, the allele frequencies in the next generation depend only on the frequencies in the current one.

We use this model to track a recessive allele …


Potential Alzheimer's Disease Plasma Biomarkers, Taylor Estepp 2023 University of Kentucky

Potential Alzheimer's Disease Plasma Biomarkers, Taylor Estepp

Theses and Dissertations--Epidemiology and Biostatistics

In this series of studies, we examined the potential of a variety of blood-based plasma biomarkers for the identification of Alzheimer's disease (AD) progression and cognitive decline. With the end goal of studying these biomarkers via mixture modeling, we began with a literature review of the methodology. An examination of the biomarkers with demographics and other health factors found evidence of minimal risk of confounding along the causal pathway from biomarkers to cognitive performance. Further study examined the usefulness of linear combinations of biomarkers, achieved via partial least squares (PLS) analysis, as predictors of various cognitive assessment scores and clinical …


Aircraft Damage Classification By Using Machine Learning Methods, Tüzün Tolga İnan 2023 Bahcesehir University

Aircraft Damage Classification By Using Machine Learning Methods, Tüzün Tolga İnan

International Journal of Aviation, Aeronautics, and Aerospace

Safety is the most significant factor that affected incidents (non-fatal) and accidents (fatal) in civil aviation history related to scheduled flights. In the history of scheduled flights, the total incident and accident number until 2022 is 1988. In this study, 677 of them are taken into consideration since 11 September 2001. The purpose of this study is to reveal the factors that can classify type of aircraft damages such as none, minor and substantial in all-time incidents and accidents. ML algorithms with different configurations are applied for the classification process. The RFE and PCA are used to find the most …


Statistical Models For Decision-Making In Professional Soccer, Sean Hellingman 2023 Wilfrid Laurier University

Statistical Models For Decision-Making In Professional Soccer, Sean Hellingman

Theses and Dissertations (Comprehensive)

As soccer is widely regarded as the most popular sport in the world there is high interest in methods of improving team performances. There are many ways teams and individual athletes can influence their own performances during competition. This thesis focuses on developing statistical methodologies for improving competition-based decision-making for soccer so as to allow professional soccer teams to make better informed decisions regarding player selection and in-game decision-making.

To properly capture the dynamic actions of professional soccer, Markov chains with increasing complexity are proposed. These models allow for the inclusion of potential changes in the process caused by goals …


Modeling Growth And Stress Factors For Converted Silvopasture Systems In The Missouri Ozarks, Bailee N. Suedmeyer 2023 Missouri State University

Modeling Growth And Stress Factors For Converted Silvopasture Systems In The Missouri Ozarks, Bailee N. Suedmeyer

MSU Graduate Theses

Silvopasture systems are becoming increasingly popular among sustainable agriculture ranchers, due to the increase in knowledge of benefits to the cattle and ability to grow cool season grasses beneath the canopy. This project focuses on the forest crop aspect of silvopasture systems from monitoring of the health of the trees over time to recommendations for thinning management to keep it functioning as viable silvopasture. The study site consists of five acres of upland hardwood forest area in Southern Missouri with 18 monumented fixed area plots. Arial and ground data was collected at each plot throughout the growing season, along with …


Network Intrusion Detection Using Deep Reinforcement Learning, Hamed T. Sanusi 2023 Georgia Southern University

Network Intrusion Detection Using Deep Reinforcement Learning, Hamed T. Sanusi

Electronic Theses and Dissertations

This thesis delves into cybersecurity by applying Deep Reinforcement(DRL) Learning in network intrusion detection. One advantage of DRL is the ability to adapt to changing network conditions and evolving attack methods, making it a promising solution for addressing the challenges involved in intrusion detection. The thesis will also discuss the obstacles and benefits of using Classification methods for network intrusion detection and the need for high-quality training data. To train and test our proposed method, the NSL-KDD dataset was used and then adjusted by converting it from a multi-classification to a binary classification, achieved by joining all attacks into one. …


Stochastic Optimization To Reduce Aircraft Taxi-In Time At Igia, New Delhi, RAJIB DAS, SAILESWAR GHOSH, RAJENDRA DESAI, PIJUS KANTI BHUIN, STUTI AGARWAL 2023 Brainware University, Kolkata

Stochastic Optimization To Reduce Aircraft Taxi-In Time At Igia, New Delhi, Rajib Das, Saileswar Ghosh, Rajendra Desai, Pijus Kanti Bhuin, Stuti Agarwal

International Journal of Aviation, Aeronautics, and Aerospace

Since there is an uncertainty in the arrival times of flights, pre-scheduled allocation of runways and stands and the subsequent first-come-first-served treatment results in a sub-optimal allocation of runways and stands, this is the prime reason for the unusual delays in taxi-in times at IGIA, New Delhi.

We simulated the arrival pattern of aircraft and utilized stochastic optimization to arrive at the best runway-stands allocation for a day. Optimization is done using a GRG Non-Linear algorithm in the Frontline Systems Analytic Solver platform. We applied this model to eight representative scenarios of two different days. Our results show that without …


The Influence Of Urban Forms And Street Infrastructure On Pedestrian-Motorist Collisions, Taylor J. Foreman 2023 Georgia Southern University

The Influence Of Urban Forms And Street Infrastructure On Pedestrian-Motorist Collisions, Taylor J. Foreman

Electronic Theses and Dissertations

Unwalkable cities are afflicted by serious issues such as increasing rates of pedestrian traffic accidents, public health concerns, and the denied right to have an accessible city. This study examines how different types of urban forms and street infrastructure contribute to the prevalence of traffic accidents in two major metropolitan cities in the United States: Atlanta, Georgia, and Boston, Massachusetts. This study utilizes geospatial analysis through the Average Nearest Neighbor and Optimized Hot Spot Analysis tools to determine the spatial distribution of traffic accidents throughout both cities. Additionally, statistical tests were conducted to explore the relationships between the number of …


Applications Of Transfer Learning From Malicious To Vulnerable Binaries, Sean Patrick McNulty 2023 The University Of Montana

Applications Of Transfer Learning From Malicious To Vulnerable Binaries, Sean Patrick Mcnulty

Graduate Student Theses, Dissertations, & Professional Papers

Malware detection and vulnerability detection are important cybersecurity tasks. Previous research has successfully applied a variety of machine learning methods to both. However, despite their potential synergies, previous research has yet to unite these two tasks. Given the recent success of transfer learning in many domains, such as language modeling and image recognition, this thesis investigated the use of transfer learning to improve vulnerability detection. Specifically, we pre-trained a series of models to detect malicious binaries and used the weights from those models to kickstart the detection of vulnerable binaries. In our study, we also investigated five different data representations …


Study On Innovation Networks And Its Spillover Effect Of China’S New Energy Automobile Industry, Zhifei XIONG, Wenzhong ZHANG 2022 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Study On Innovation Networks And Its Spillover Effect Of China’S New Energy Automobile Industry, Zhifei Xiong, Wenzhong Zhang

Bulletin of Chinese Academy of Sciences (Chinese Version)

The network spillover effect of knowledge has been playing an increasingly significant role in the development of industrial innovation. The urban cooperation matrix of China’s new energy automobile industry is built based on new energy automobile patent data, and the structure and evolution process of China’s new energy automobile industry are depicted. On this basis, the spatial Dubin model (SDM) is used to calculate the network spillover effect, and its results are compared with the results of spillover effect based on the relationship of spatial contiguity and distance of cities. The results show that the innovation activities of China’s new …


Towards Structured Planning And Learning At The State Fisheries Agency Scale, Caleb A. Aldridge 2022 Mississippi State University

Towards Structured Planning And Learning At The State Fisheries Agency Scale, Caleb A. Aldridge

Theses and Dissertations

Inland recreational fisheries has grown philosophically and scientifically to consider economic and sociopolitical aspects (non-biological) in addition to the biological. However, integrating biological and non-biological aspects of inland fisheries has been challenging. Thus, an opportunity exists to develop approaches and tools which operationalize planning and decision-making processes which include biological and non-biological aspects of a fishery. This dissertation expands the idea that a core set of goals and objectives is shared among and within inland fisheries agencies; that many routine operations of inland fisheries managers can be regimented or standardized; and the novel concept that current information and operations can …


Larval Ecology Of Atlantic Bluefin Tuna (Thunnus Thynnus): New Insights From Otolith Microstructure, Biotic, And Abiotic Analyses From The Gulf Of Mexico And Mediterranean Sea, Estrella Malca 2022 Nova Southeastern University

Larval Ecology Of Atlantic Bluefin Tuna (Thunnus Thynnus): New Insights From Otolith Microstructure, Biotic, And Abiotic Analyses From The Gulf Of Mexico And Mediterranean Sea, Estrella Malca

All HCAS Student Capstones, Theses, and Dissertations

Atlantic bluefin tuna (ABT), Thunnus thynnus, spawn in the Gulf of Mexico (GoM) and the Mediterranean Sea (MED). Spawning occurs within narrow temporal and environmental parameters. Efforts to characterize growth of ABT in wild conditions revealed a wide range of growth variability during the early life stages. This series of studies examined potential biotic and abiotic influences of larval growth from seven ABT cohorts, and identified several key drivers of growth for this commercially valuable species. A detailed investigation of larval dynamics using otolith microstructure was conducted as follows. First, companion growth curves and stable isotope analysis from the same …


Statistical Methods For Modern Threats, Brandon Lumsden 2022 Clemson University

Statistical Methods For Modern Threats, Brandon Lumsden

All Dissertations

More than ever before, technology is evolving at a rapid pace across the broad spectrum of biological sciences. As data collection becomes more precise, efficient, and standardized, a demand for appropriate statistical modeling grows as well. Throughout this dissertation, we examine a variety of new age data arising from modern technology of the 21st century. We begin by employing a suite of existing statistical techniques to address research questions surrounding three medical conditions presenting in public health sciences. Here we describe the techniques used, including generalized linear models and longitudinal models, and we summarize the significant associations identified between research …


Bayesian Methods For Graphical Models With Neighborhood Selection., Sagnik Bhadury 2022 University of Louisville

Bayesian Methods For Graphical Models With Neighborhood Selection., Sagnik Bhadury

Electronic Theses and Dissertations

Graphical models determine associations between variables through the notion of conditional independence. Gaussian graphical models are a widely used class of such models, where the relationships are formalized by non-null entries of the precision matrix. However, in high-dimensional cases, covariance estimates are typically unstable. Moreover, it is natural to expect only a few significant associations to be present in many realistic applications. This necessitates the injection of sparsity techniques into the estimation method. Classical frequentist methods, like GLASSO, use penalization techniques for this purpose. Fully Bayesian methods, on the contrary, are slow because they require iteratively sampling over a quadratic …


Digital Commons powered by bepress