Open Access. Powered by Scholars. Published by Universities.®

Nuclear Commons

Open Access. Powered by Scholars. Published by Universities.®

1,449 Full-Text Articles 3,409 Authors 247,285 Downloads 100 Institutions

All Articles in Nuclear

Faceted Search

1,449 full-text articles. Page 3 of 49.

Azimuthal Anisotropy Of Different Quark-Flavored Particles In High Energy "Simulated" Proton-Proton Collisions, Mahmoud Rateb 2023 American University in Cairo

Azimuthal Anisotropy Of Different Quark-Flavored Particles In High Energy "Simulated" Proton-Proton Collisions, Mahmoud Rateb

Theses and Dissertations

Anisotropic flow in high energy heavy-ion collisions is taken as a key evidence for the formation of QGP for brief seconds right after the collisions. Hydrodynamic models including QGP formation are accurate at predicting the azimuthal anisotropy of the produced particles at low transverse momenta. At high momenta however, hydrodynamic models predict no azimuthal anisotropy for particles of different masses and quark-flavors; the logic being that because of their high momenta, the particles pass through the media without having any time to have any reactivity. This is contrary to results from experiments where measurements of particles of different quark flavors …


Study Of Fusion Reactions Of Some Light Projectiles On Medium Targets, Ruaa S. Abdullhussein, Ghuzlan Sarhan Ahmed, Sarah M. Obaid 2023 College of Health and Medical Technology, Middle Technical University, Baghdad, Iraq

Study Of Fusion Reactions Of Some Light Projectiles On Medium Targets, Ruaa S. Abdullhussein, Ghuzlan Sarhan Ahmed, Sarah M. Obaid

Al-Bahir Journal for Engineering and Pure Sciences

Background and objectives: The investigation of heavy-ion (HI) induced fusion processes in order to comprehend the many mechanisms involved in these reactions has long been a focus of nuclear physics. The complicated structure and behavior of projectile and target nuclei with various projectile energy allows us to define the reaction process and may aid in the investigation of the potential of creating superheavy elements (SHE) in the laboratory.

Methods: The semiclassical and full quantum mechanical complete fusion cross section calculations and the distribution of the fusion barrier for the systems 12C+50Ti,15N+56Fe, …


Measurement Of Near-Threshold Proton Branching Ratios In 31s Important For Novae, Sudarsan Balakrishnan 2023 Louisiana State University and Agricultural and Mechanical College

Measurement Of Near-Threshold Proton Branching Ratios In 31s Important For Novae, Sudarsan Balakrishnan

LSU Doctoral Dissertations

Classical novae are stellar explosions that contribute to the nucleosynthesis of isotopes on the proton-rich side of the valley of stability up to 40Ca. In ONe novae, the incompletely understood reaction rate of 30P(p,γ)31S is known to strongly influence the production rate of several stable isotopes such as 30Si, 31P, and 32,33,34S. A precise measurement of this reaction rate has several potential implications towards matching astrophysical observables to the physical composition of the nova site -- the observed elemental abundance ratios of O/S and S/Al have been suggested as useful `thermometers' to gauge …


R-Process Nucleosynthesis: Identifying The Significant Nuclear Properties, Sabina Gaia Tomasicchio 2023 University of Seville

R-Process Nucleosynthesis: Identifying The Significant Nuclear Properties, Sabina Gaia Tomasicchio

2023 REYES Proceedings

We provide a theoretical overview of r-process nucleosynthesis. We then identify the nuclear properties that have the greatest astrophysical impact according to recent sensitivity studies as: nuclear masses, β decays and neutron capture rates. Finally, we briefly discuss how the NuCRL model can enhance the performance of the relevant simulations.


Particle Swarm Optimization For High Rigidity Spectrometer, Yicheng Wang 2023 Bucknell University

Particle Swarm Optimization For High Rigidity Spectrometer, Yicheng Wang

Honors Theses

The goal of this project is to find reliable parameter settings for a multi-dimensional global optimizer to optimize the performance of a large acceptance ion optical system for the requirements of nuclear physics experiments. We develop and test the Particle Swarm Optimization (PSO), a global optimization algorithm designed for continuous multi-dimensional problems, on a large acceptance particle beam separator, the High Rigidity Spectrometer (HRS) at the Facility for Rare Isotope Beams (FRIB), which is a laboratory specializing in the production and experimental study of short-lived nuclear matter. We split the HRS into two sections, the High-Transmission Beamline (HTBL) and the …


The Design Of Primary Holding Magnet For The Lanl Neutron Electric Dipole Moment Experiment, Piya Amara Palamure 2023 University of Kentucky

The Design Of Primary Holding Magnet For The Lanl Neutron Electric Dipole Moment Experiment, Piya Amara Palamure

Theses and Dissertations--Physics and Astronomy

The measurement of the permanent electric dipole moment of the neutron (nEDM) plays a significant role in searching for sources of beyond standard model CP violating physics. The goal of the Los Alamos National Laboratory (LANL) nEDM experiment is to push the upper limit of the nEDM to < 3 × 10−27 e·cm (68 % CL). A highly uniform magnetic field is key to achieving this sensitivity for the nEDM measurement by reducing the systematic uncertainties associated with the magnetic field non-uniformity. The B0 coil was designed to achieve a field uniformity of < 0.3 nT·m−1 at a nominal holding field of 1 µT. This document will outline a novel technique employed in the construction of the B0 coil using printed circuit boards (PCBs) and will present preliminary field maps obtained with the B0 coil housed in a magnetically shielded room (MSR) at LANL.

As Ultra Cold Neutrons (UCNs) move from the source to the measurement cells, the UCNs experience a large magnetic field gradient in the region between the layers of the MSR. This large gradient would otherwise cause depolarization of the UCNs. To mitigate this, a double cos θ coil will serve as the …


Design Of The Highly Uniform Magnetic Field And Spin-Transport Magnetic Field Coils For The Los Alamos National Lab Neutron Electric Dipole Moment Experiment, Jared Brewington 2023 University of Kentucky

Design Of The Highly Uniform Magnetic Field And Spin-Transport Magnetic Field Coils For The Los Alamos National Lab Neutron Electric Dipole Moment Experiment, Jared Brewington

Theses and Dissertations--Physics and Astronomy

Charge-Parity (CP) violation is one of Sakharov's three conditions which serve as guidelines for the generation of a matter-antimatter asymmetry in the early universe. The Standard Model (SM) of particle physics contains sources of CP violation which can be used to predict the baryon asymmetry. The observed baryon asymmetry is not predicted from SM calculations, meaning there must be additional sources of CP violation beyond the Standard Model (BSM) to generate the asymmetry. Permanent electric dipole moments (EDMs), which are inherently parity- and time reversal- violating, present a promising avenue for the discovery of new sources of CP violation to …


Quantum Computing For Nuclear Physics, Aikaterini Nikou 2023 The University of Edinburgh

Quantum Computing For Nuclear Physics, Aikaterini Nikou

2023 REYES Proceedings

Nuclear physics can greatly advance by taking advantage of quantum computing. Quantum computing can play a pivotal role in advancing nuclear physics and can allow for the description of physical situations and problems that are prohibitive to solve using classical computing due to their complexity. Some of the problems whose complexity requires using quantum computing to describe are: interacting quantum many-body and Quantum Field Theory problems such as simulating strongly interacting fields such as Quantum Chromodynamics with physical time evolution, the determination of the shape/phase of a nucleus using the time evolution of an appropriated observable as well as identifying …


Spontaneous Symmetry Breaking And Goldstone Theorem, Emilia Szymańska 2023 University of Wrocław

Spontaneous Symmetry Breaking And Goldstone Theorem, Emilia Szymańska

2023 REYES Proceedings

We discuss the concept of spontaneous symmetry breaking and illustrate it with a general example. We consider Wigner-Weyl and Nambu-Goldstone realisations of symmetry in the quantum theory. Next, we state Goldstone’s theorem and sketch its proof. We discuss why quantum chromodynamics is not realised in the Wigner-Weyl mode. We also consider different order parameters of spontaneous chiral symmetry breaking.


Ml-Based Surrogates And Emulators, Tareq Alghamdi, Yaohang Li, Nobuo Sato 2023 Old Dominion University

Ml-Based Surrogates And Emulators, Tareq Alghamdi, Yaohang Li, Nobuo Sato

College of Sciences Posters

No abstract provided.


True Random Number Generators, Jade Geng 2023 Bard College

True Random Number Generators, Jade Geng

Senior Projects Spring 2023

Quantum Random Number Generators(QRNGs), or True Random Number Generators, generate random numbers based on naturally unpredictable(or hard-to-predict) sources. Their unpredictability results in a broad application in cryptography and technology. Their sources range from nuclear decay gamma rays to cosmic rays, then to quantum optics. This thesis aims to explore various randomness sources and compare their efficiency by running a series of randomness tests. The specific setup for each random number generator will also be presented.


Exclusive 𝝅⁻ Electroproduction Off The Neutron In Deuterium In The Resonance Region, Y. Tian, R. W. Gothe, V. I. Mokeev, G. Hollis, M. J. Amaryan, W. R. Armstrong, H. Atac, H. Avakian, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. Biselli, F. Bossù, S. Boiarinov, M. Bondì, J. Zhang, et al., The CLAS Collaboration 2023 Old Dominion University

Exclusive 𝝅⁻ Electroproduction Off The Neutron In Deuterium In The Resonance Region, Y. Tian, R. W. Gothe, V. I. Mokeev, G. Hollis, M. J. Amaryan, W. R. Armstrong, H. Atac, H. Avakian, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. Biselli, F. Bossù, S. Boiarinov, M. Bondì, J. Zhang, Et Al., The Clas Collaboration

Physics Faculty Publications

New results for the exclusive and quasifree cross sections off neutrons bound in deuterium 𝛾vn(p) → pπ− (p) are presented over a wide final state hadron angle range with a kinematic coverage of the invariant mass (W) up to 1.825 GeV and the four-momentum transfer squared (Q2) from 0.4 to 1.0 GeV2. The exclusive structure functions were extracted and their Legendre moments were obtained. Final-state-interaction contributions have been kinematically separated from the extracted quasifree cross sections off bound neutrons solely based on the analysis of the experimental data. These new results will serve as …


Generation And Characterization Of Magnetized Electron Beam From A Dc High Voltage Photogun For Electron Beam Cooling Application, S.A.K. Wijethunga, M. A. Mamun, R. Suleiman, P. Adderley, B. Bullard, J. Benesch, Jean R. Delayen, J. Grames, C. Hernandez-Garcia, F. Hannon, Geoffrey A. Krafft, G. Palacios-Serrano, M. Poelker, M. Stefani, Y. Wang, S. Zhang 2023 Old Dominion University

Generation And Characterization Of Magnetized Electron Beam From A Dc High Voltage Photogun For Electron Beam Cooling Application, S.A.K. Wijethunga, M. A. Mamun, R. Suleiman, P. Adderley, B. Bullard, J. Benesch, Jean R. Delayen, J. Grames, C. Hernandez-Garcia, F. Hannon, Geoffrey A. Krafft, G. Palacios-Serrano, M. Poelker, M. Stefani, Y. Wang, S. Zhang

Physics Faculty Publications

One of the most challenging requirements for the proposed Electron–Ion Collider is the strong cooling of the proton beam, which is key to achieving the collider’s desired luminosity of order 1033–1034cm−2s−1. Magnetized bunched-beam electron cooling could be a means to achieve the required high luminosity, where strong cooling is accomplished inside a cooling solenoid where the ions co-propagate with an electron beam generated from a source immersed in a magnetic field. To increase the cooling efficiency, a bunched electron beam with high bunch charge and high repetition rate is required. This work …


First Measurement Of Λ Electroproduction Off Nuclei In The Current And Target Fragmentation Regions, T. Chetry, L. El Fassi, W. K. Brooks, R. Dupré, A. El Alaoui, K. Hafidi, P. Achenbach, K. P. Adhikari, Z. Akbar, W.R. Armstrong, M. Arratia, H. Atac, H. Avakian, L. Baashen, N.A. Baltzell, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, M. Zurek, Et al., CLAS Collaboration 2023 Old Dominion University

First Measurement Of Λ Electroproduction Off Nuclei In The Current And Target Fragmentation Regions, T. Chetry, L. El Fassi, W. K. Brooks, R. Dupré, A. El Alaoui, K. Hafidi, P. Achenbach, K. P. Adhikari, Z. Akbar, W.R. Armstrong, M. Arratia, H. Atac, H. Avakian, L. Baashen, N.A. Baltzell, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, M. Zurek, Et Al., Clas Collaboration

Physics Faculty Publications

We report results of Λ hyperon production in semi-inclusive deep-inelastic scattering off deuterium, carbon, iron, and lead targets obtained with the CLAS detector and the Continuous Electron Beam Accelerator Facility 5.014 GeV electron beam. These results represent the first measurements of the Λ multiplicity ratio and transverse momentum broadening as a function of the energy fraction (z) in the current and target fragmentation regions. The multiplicity ratio exhibits a strong suppression at high zand an enhancement at low z. The measured transverse momentum broadening is an order of magnitude greater than that seen for light mesons. This …


Electron Scattering And Neutrino Physics, A. M. Ankowski, A. Ashkenazi, S. Bacca, J. L. Barrow, M. Betancourt, A. Bodek, M. E. Christy, L. Doria, S. Dytman, A. Friedland, O. Hen, C. J. Horowitz, N. Jachowicz, W. Ketchum, T. Lux, K. Mahn, C. Mariani, J. Newby, V. Pandey, A. Papadopoulou, E. Radicioni, F. Sánchez, C. Sfienti, J. M. Udías, L. Weinstein, L. Alvarez-Ruso, J. E. Amaro, C. A. Argüelles, A. B. Balantekin, S. Bolognesi, V. Brdar, P. Butti, S. Carey, Z. Djurcic, O. Dvornikov, S. Edayath, S. Gardiner, J. Isaacson, W. Jay, K. S. McFarland, A. Nikolakopoulos, A. Norrick, S. Pastore, G. Paz, M. H. Reno, I. Ruiz Simo, J. E. Sobczyk, A. Sousa, N. Toro, Y. D. Tsai, M. Wagman, J. G. Walsh, G. Yang 2023 Old Dominion University

Electron Scattering And Neutrino Physics, A. M. Ankowski, A. Ashkenazi, S. Bacca, J. L. Barrow, M. Betancourt, A. Bodek, M. E. Christy, L. Doria, S. Dytman, A. Friedland, O. Hen, C. J. Horowitz, N. Jachowicz, W. Ketchum, T. Lux, K. Mahn, C. Mariani, J. Newby, V. Pandey, A. Papadopoulou, E. Radicioni, F. Sánchez, C. Sfienti, J. M. Udías, L. Weinstein, L. Alvarez-Ruso, J. E. Amaro, C. A. Argüelles, A. B. Balantekin, S. Bolognesi, V. Brdar, P. Butti, S. Carey, Z. Djurcic, O. Dvornikov, S. Edayath, S. Gardiner, J. Isaacson, W. Jay, K. S. Mcfarland, A. Nikolakopoulos, A. Norrick, S. Pastore, G. Paz, M. H. Reno, I. Ruiz Simo, J. E. Sobczyk, A. Sousa, N. Toro, Y. D. Tsai, M. Wagman, J. G. Walsh, G. Yang

Physics Faculty Publications

A thorough understanding of neutrino–nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino–nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments—both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program—and could well be the difference between achieving or missing discovery level precision. To this end, electron–nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used …


Observation Of Correlations Between Spin And Transverse Momenta In Back-To-Back Dihadron Production At Clas12, H. Avakian, T.B. Hayward, A. Kotzinian, W.R. Armstrong, H. Atac, C. Ayerbe Gayoso, L. Baashen, N.A. Balzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, S. Boiarinov, M. Zurek, Et al. 2023 Old Dominion University

Observation Of Correlations Between Spin And Transverse Momenta In Back-To-Back Dihadron Production At Clas12, H. Avakian, T.B. Hayward, A. Kotzinian, W.R. Armstrong, H. Atac, C. Ayerbe Gayoso, L. Baashen, N.A. Balzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, S. Boiarinov, M. Zurek, Et Al.

Physics Faculty Publications

We report the first measurements of deep inelastic scattering spin-dependent azimuthal asymmetries in back-to-back dihadron electroproduction in the deep inelastic scattering process. In this reaction, two hadrons are produced in opposite hemispheres along the z axis in the virtual photon-target nucleon center-of-mass frame, with the first hadron produced in the current-fragmentation region and the second in the target-fragmentation region. The data were taken with longitudinally polarized electron beams of 10.2 and 10.6 GeV incident on an unpolarized liquid-hydrogen target using the CLAS12 spectrometer at Jefferson Lab. Observed nonzero sinΔϕ modulations in ep→e'pπ+ X events, where Δϕ is the difference …


A Multidimensional Study Of The Structure Function Ratio Σlt'/ Σ₀ From Hard Exclusive ��⁺ Electro-Production Off Protons In The Gpd Regime, S. Diehl, A. Kim, K. Joo, P. Achenbach, Z. Akbar, M. J. Amaryan, H. Atac, H. Avagyan, C. Ayerbe Gayoso, L. Baashen, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, W.A. Booth, M. Zurek, et al. 2023 Old Dominion University

A Multidimensional Study Of The Structure Function Ratio Σlt'/ Σ₀ From Hard Exclusive ��⁺ Electro-Production Off Protons In The Gpd Regime, S. Diehl, A. Kim, K. Joo, P. Achenbach, Z. Akbar, M. J. Amaryan, H. Atac, H. Avagyan, C. Ayerbe Gayoso, L. Baashen, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, W.A. Booth, M. Zurek, Et Al.

Physics Faculty Publications

A multidimensional extraction of the structure function ratio from the hard exclusive ep → e'n��+ reaction above the resonance region has been performed. The study was done based on beam-spin asymmetry measurements using a 10.6 GeV incident electron beam on a liquid-hydrogen target and the CLAS12 spectrometer at Jefferson Lab. The measurements focus on the very forward regime (t/Q2≪ 1) with a wide kinematic range of in the valence regime (0.17 < ��B < 0.55), and virtualities ranging from 1.5 GeV2 up to 6 GeV2. The results and their comparison to theoretical models based on Generalized Parton Distributions demonstrate the sensitivity to chiral-odd …


Prospects For 𝛾*𝛾* → 𝜋𝜋 Via Lattice Qcd, Raúl Briceño, Andrew W. Jackura, Arkaitz Rodas, Juan V. Guerrero 2023 Old Dominion University

Prospects For 𝛾*𝛾* → 𝜋𝜋 Via Lattice Qcd, Raúl Briceño, Andrew W. Jackura, Arkaitz Rodas, Juan V. Guerrero

Physics Faculty Publications

The 𝛾*𝛾* → 𝜋𝜋 scattering amplitude plays a key role in a wide range of phenomena, including understanding the inner structure of scalar resonances as well as constraining the hadronic contributions to the anomalous magnetic moment of the muon. In this work, we explain how the infinite-volume Minkowski amplitude can be constrained from finite-volume Euclidean correlation functions. The relationship between the finite-volume Euclidean correlation functions and the desired amplitude holds up to energies where 3𝜋 states can go on shell, and is exact up to exponentially small corrections that scale like 𝒪(e−m𝜋L), where L is the spatial extent …


Basics Of Factorization In A Scalar Yukawa Field Theory, F. Aslan, L. Gamberg, J.O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers 2023 Old Dominion University

Basics Of Factorization In A Scalar Yukawa Field Theory, F. Aslan, L. Gamberg, J.O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers

Physics Faculty Publications

The factorization theorems of QCD apply equally well to most simple quantum field theories that require renormalization but where direct calculations are much more straightforward. Working with these simpler theories is convenient for stress testing the limits of the factorization program and for examining general properties of the parton density functions or other correlation functions that might be necessary for a factorized description of a process. With this view in mind, we review the steps of factorization in a real scalar Yukawa field theory for both deep inelastic scattering and semi-inclusive deep inelastic scattering cross sections. In the case of …


Measurement Of Spin-Density Matrix Elements In P(770) Production With A Linearly Polarized Photon Beam At E𝛾 = 8.2-8.8 Gev, S. Adhikari, F. Afzal, C. S. Akondi, M. Albrecht, M. Amaryan, V. Arroyave, A. Asaturyan, A. Austregesilo, Z. Baldwin, F. Barbosa, J. Barlow, E. Barriga, R. Barsotti, T. D. Beattie, V. V. Berdnikov, T. Black, W. Boeglin, W. J. Briscoe, T. Britton, B. Zihlmann, Et al., GlueX Collaboration 2023 Old Dominion University

Measurement Of Spin-Density Matrix Elements In P(770) Production With A Linearly Polarized Photon Beam At E𝛾 = 8.2-8.8 Gev, S. Adhikari, F. Afzal, C. S. Akondi, M. Albrecht, M. Amaryan, V. Arroyave, A. Asaturyan, A. Austregesilo, Z. Baldwin, F. Barbosa, J. Barlow, E. Barriga, R. Barsotti, T. D. Beattie, V. V. Berdnikov, T. Black, W. Boeglin, W. J. Briscoe, T. Britton, B. Zihlmann, Et Al., Gluex Collaboration

Physics Faculty Publications

The GlueX experiment at Jefferson Lab studies photoproduction of mesons using linearly polarized 8.5 GeV photons impinging on a hydrogen target which is contained within a detector with near-complete coverage for charged and neutral particles. We present measurements of spin-density matrix elements for the photoproduction of the vector meson ρ(770). The statistical precision achieved exceeds that of previous experiments for polarized photoproduction in this energy range by orders of magnitude. We confirm a high degree of s-channel helicity conservation at small squared four-momentum transfer t and are able to extract the t dependence of natural- and unnatural-parity exchange contributions to …


Digital Commons powered by bepress