Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,565 Full-Text Articles 3,604 Authors 543,325 Downloads 122 Institutions

All Articles in Engineering Physics

Faceted Search

1,565 full-text articles. Page 1 of 67.

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough 2024 University of Arkansas, Fayetteville

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler 2024 Air Force Institute of Technology

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler

Faculty Publications

Ferroelectricity in hafnium zirconium oxide (Hf1−xZrxO2) and the factors that impact it have been a popular research topic since its discovery in 2011. Although the general trends are known, the interactions between fabrication parameters and their effect on the ferroelectricity of Hf1−xZrxO2 require further investigation. In this paper, we present a statistical study and a model that relates Zr concentration (x), film thickness (tf), and annealing temperature (Ta) with the remanent polarization (Pr) in tungsten (W)-capped Hf1−xZrxO2. …


Coomassie Brilliant Blue Dye As A Method For Analyzing Fracture Markings In Bone, Abigail Hoffmeister, David Harutunyan, Matthew Aizawa, Everett Baker, Brandon Mendoza, Chase Freeman, Siran Iskanian 2024 Pepperdine University

Coomassie Brilliant Blue Dye As A Method For Analyzing Fracture Markings In Bone, Abigail Hoffmeister, David Harutunyan, Matthew Aizawa, Everett Baker, Brandon Mendoza, Chase Freeman, Siran Iskanian

Seaver College Research And Scholarly Achievement Symposium

Coomassie Brilliant Blue Dye is a dye commonly used to stain proteins. Because of its ability to adhere to proteins, this research has focused on perfecting a method of dyeing a fractured flat bone in order to most accurately observe and analyze fracture markings within the trabecular layer. Stereoscopic microscopy was the chosen technique of analysis for this research because of its proven effectiveness in glass and ceramic fractography to observe varying depths. In order to most effectively apply stereoscopic microscopy to this research, the following variables were manipulated to maximize color contrast in the trabecular layer in order to …


The Behavior Of ½⟨111⟩ Screw Dislocations In W–Mo Alloys Analyzed Through Atomistic Simulations, Lucas A. Heaton, Kevin Chu, Adib J. Samin 2024 Air Force Institute of Technology

The Behavior Of ½⟨111⟩ Screw Dislocations In W–Mo Alloys Analyzed Through Atomistic Simulations, Lucas A. Heaton, Kevin Chu, Adib J. Samin

Faculty Publications

Analyzing plastic flow in refractory alloys is relevant to many different commercial and technological applications. In this study, screw dislocation statics and dynamics were studied for various compositions of the body-centered cubic binary alloy tungsten–molybdenum (W–Mo). The core structure did not appear to change for different alloy compositions, consistent with the literature. The pure tungsten and pure molybdenum samples had the lowest plastic flow, while the highest dislocation velocities were observed for equiatomic, W0.5Mo0.5 alloys. In general, dislocation velocities were found to largely align with a well-established dislocation mobility phenomenological model supporting two discrete dislocation mobility regimes, …


Disaggregating Longer-Term Trends From Seasonal Variations In Measured Pv System Performance, Chibuisi Chinasaokwu Okorieimoh, Brian Norton, Michael Conlon 2024 Technological University Dublin

Disaggregating Longer-Term Trends From Seasonal Variations In Measured Pv System Performance, Chibuisi Chinasaokwu Okorieimoh, Brian Norton, Michael Conlon

Articles

Photovoltaic (PV) systems are widely adopted for renewable energy generation, but their performance is influenced by complex interactions between longer-term trends and seasonal variations. This study aims to remove these factors and provide valuable insights for optimising PV system operation. We employ comprehensive datasets of measured PV system performance over five years, focusing on identifying the distinct contributions of longer-term trends and seasonal effects. To achieve this, we develop a novel analytical framework that combines time series and statistical analytical techniques. By applying this framework to the extensive performance data, we successfully break down the overall PV system output into …


Magneto-Thermal Limitations In Superconducting Cavities At High Radio-Frequency Fields, I. Parajuli, G. Ciovati, A. Gurevich 2024 Old Dominion University

Magneto-Thermal Limitations In Superconducting Cavities At High Radio-Frequency Fields, I. Parajuli, G. Ciovati, A. Gurevich

Physics Faculty Publications

The performance of superconducting radio-frequency Nb cavities at high radio-frequency (rf) fields in the absence of field emission can be limited by either a sharp decrease of the quality factor Q0(Bp) above peak surface magnetic fields Bp ∼100 mT or by a quench. We have measured Q0(Bp) at 2 K of several 1.3 GHz single-cell Nb cavities with different grain sizes, and with different ambient magnetic fields and cooldown rates below the critical temperature. Temperature mapping and a novel magnetic field mapping systems were used to find the location of “hot-spots” …


Numerical Study Of Owls' Leading-Edge Serrations, Asif Shahriar Nafi, Nikolaos Beratlis, Elias Balaras, Roi Gurka 2023 Coastal Carolina University

Numerical Study Of Owls' Leading-Edge Serrations, Asif Shahriar Nafi, Nikolaos Beratlis, Elias Balaras, Roi Gurka

Physics and Engineering Science

Owls' silent flight is commonly attributed to their special wing morphology combined with wingbeat kinematics. One of these special morphological features is known as the leading-edge serrations: rigid miniature hook-like patterns found at the primaries of the wings' leading-edge. It has been hypothesized that leading-edge serrations function as a passive flow control mechanism, impacting the aerodynamic performance. To elucidate the flow physics associated with owls' leading-edge serrations, we investigate the flow-field characteristic around a barn owl wing with serrated leading-edge geometry positioned at 20° angle of attack for a Reynolds number of 40 000. We use direct numerical simulations, where …


Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise 2023 University of Nebraska-Lincoln

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


Directional Microwave Emission From Femtosecond-Laser Illuminated Linear Arrays Of Superconducting Rings, Thomas J. Bullard, Kyle Frische, Charlie Ebbing, Stephen J. Hageman, John Morrison, John Bulmer, Enam A. Chowdury, Michael L. Dexter, Timothy J. Haugan, Anil K. Patniak 2023 Air Force Research Laboratory

Directional Microwave Emission From Femtosecond-Laser Illuminated Linear Arrays Of Superconducting Rings, Thomas J. Bullard, Kyle Frische, Charlie Ebbing, Stephen J. Hageman, John Morrison, John Bulmer, Enam A. Chowdury, Michael L. Dexter, Timothy J. Haugan, Anil K. Patniak

Faculty Publications

We examine the electromagnetic emission from two photo-illuminated linear arrays composed of inductively charged superconducting ring elements. The arrays are illuminated by an ultrafast infrared laser that triggers microwave broadband emission detected in the 1–26 GHz range. Based on constructive interference from the arrays a narrowing of the forward radiation lobe is observed with increasing element count and frequency demonstrating directed GHz emission. Results suggest that higher frequencies and a larger number of elements are achievable leading to a unique pulsed array emitter concept that can span frequencies from the microwave to the terahertz (THz) regime.


Hydroxyapatite-Based Coatings On Silicon Wafers And Printed Zirconia, Antoine Chauvin 2023 University of Nebraska-Lincoln

Hydroxyapatite-Based Coatings On Silicon Wafers And Printed Zirconia, Antoine Chauvin

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Dental surgery needs a naturally attract implant design that can ensure both osseointegration and soft tissue integration. Hydroxyapatite (HAp), the main mineral constituent of dentine and tooth enamel, is commonly used as a coating component, notably for overlaying titanium– or ceramics–based implants. This thesis aims to investigate the behavior of a HAp-based coating, specifically designed to be compatible with a porous substrate. Coating layers are made by sol–gel dip coating by immersion of porous substrates made by additive manufacturing into solutions of HAp, having been mixed with polyethyleneimine (PEI), to improve the adhesion of HAp on the substrate. First, the …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim 2023 Air Force Institute of Technology

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Improving The Structural And Physical Yield Of Aluminum By Repeated Additions Of Iron Carbide, Fayrooz K. Albasri 2023 Presidency University, Fallujah University, Fallujah, Iraq.

Improving The Structural And Physical Yield Of Aluminum By Repeated Additions Of Iron Carbide, Fayrooz K. Albasri

Al-Bahir Journal for Engineering and Pure Sciences

Aluminum suffers from low hardness and some ductility when thermal sintering which requires reinforcement with carbide or ceramic materials as Iron FeC with volumetric properties (2,4,6,8,10 )%. For purpose of the pressing process after mixing the two powder together, a scanning electron microscope examination performed for the prepared samples and found that there is a surface and structural consistency between aluminum and iron carbide and the best homogeneity is at10 % of carbide. Also some physical tests conducted for prepared samples and the results of the real density showed that the addition of iron carbide increases the density gradually and …


Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman 2023 Brigham Young University

Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman

Directivity

The directivity function of a played musical instrument describes the angular dependence of its acoustic radiation and diffraction about the instrument, musician, and musician’s chair. Directivity influences sound in rehearsal, performance, and recording environments and signals in audio systems. Because high-resolution, spherically comprehensive measurements of played musical instruments have been unavailable in the past, the authors have undertaken research to produce and share such data for studies of musical instruments, simulations of acoustical environments, optimizations of microphone placements, and other applications. The authors acquired the data from repeated chromatic scales produced by a trumpet played at mezzo-forte in an anechoic …


The Role Of Leading-Edge Serrations In Controlling The Flow Over Owls’ Wing, Tanner Saussaman, Asif Nafi, David Charland, Hadar Ben-Gida, Roi Gurka 2023 Coastal Carolina University

The Role Of Leading-Edge Serrations In Controlling The Flow Over Owls’ Wing, Tanner Saussaman, Asif Nafi, David Charland, Hadar Ben-Gida, Roi Gurka

Physics and Engineering Science

We studied the effects of leading-edge serrations on the flow dynamics developed over an owl wing model. Owls are predatory birds. Most owl species are nocturnal, with some active during the day. The nocturnal ones feature stealth capabilities that are partially attributed to their wing microfeatures. One of these microfeatures is small rigid combs (i.e. serrations) aligned at an angle with respect to the incoming flow located at the wings' leading-edge region of the primaries. These serrations are essentially passive flow control devices that enhance some of the owls' flight characteristics, such as aeroacoustics and, potentially, aerodynamics. We performed a …


Using Powder Metallurgy Process To Produce Ceramic-Metal Composites, Ibrahim F. Abed, Salih, Y. Darweesh 2023 Physics, Department, College of Science, Cankiri Karatekin University, Cankiri, Turkey

Using Powder Metallurgy Process To Produce Ceramic-Metal Composites, Ibrahim F. Abed, Salih, Y. Darweesh

Al-Bahir Journal for Engineering and Pure Sciences

Pressing powders and engineering materials is an innovative method for producing samples with a low cost and multiple industrial applications. In the current article, copper metal was added in different volume ratios to a ceramic material, alumina, for the purpose of improving the properties of alumina, by pressing with a hydraulic press. Where the results of the article showed that the percentage of true porosity after sintering is from (26-13)% with a copper content of (5%) to (25%). As for the apparent porosity after sintering, it decreased from (26-9)% at a copper content of (5-25)%, while the water absorption was …


Ferroelectric Hafnia Surface In Action, Xia Hong 2023 University of Nebraska-Lincoln

Ferroelectric Hafnia Surface In Action, Xia Hong

Nebraska Center for Materials and Nanoscience: Faculty Publications

Piezoresponse microscopy and spectroscopy reveal the inextricable role of surface electrochemistry in stabilizing and controlling ferroelectricity in doped hafnia.

Doped hafnia (HfO2), a relatively new member of the ferroelectric family, has challenged in many ways our conventional perception of ferroelectric oxides. It possesses extremely localized electric dipoles that are independently switchable,1 making it immune to finite size effects — the loss of long-range dipole order in ferroic materials due to size scaling. While polycrystalline grains and microstructures can yield lower polarization and poorer cycling behavior in canonical ferroelectrics such as Pb(Zr,Ti)O3 and BaTiO3, in …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron 2023 University of Massachusetts Amherst

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Direct Measurement Of The 114cd(��, ��)115cd Cross Section In The 1 Ev To 300 Kev Energy Range, Kofi Tutu Addo Assumin-Gyimah 2023 Mississippi State University

Direct Measurement Of The 114cd(��, ��)115cd Cross Section In The 1 Ev To 300 Kev Energy Range, Kofi Tutu Addo Assumin-Gyimah

Theses and Dissertations

The large thermal cross section of cadmium makes it ideal for many practical applications where screening of thermal neutrons is desired. For example, in non-destructive assay techniques, or for astrophysical studies of the s-process. All such applications require precise knowledge of the neutron-capture cross section on cadmium. Although there are some data on neutron-capture cross sections particularly at thermal energies and at energies relevant for astrophysics, there is very little data at most other energies. Further, the evaluated cross sections from the ENDF and JENDL databases disagree at high energies. Therefore, there is a critical need for precise knowledge of …


Study Of Microphonic Effects On The C100 Cryomodule For High Energy Electron Beam Accelerators, Caleb James Hull 2023 Old Dominion University

Study Of Microphonic Effects On The C100 Cryomodule For High Energy Electron Beam Accelerators, Caleb James Hull

Mechanical & Aerospace Engineering Theses & Dissertations

The Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson National Laboratory (JLab) is a particle accelerator which can accelerate an electron beam to relativistic speeds and apply the beam onto target samples. The C100 superconducting radio frequency (SRF) cavity is the primary accelerating structure of the C100 cryomodule, one of the many cryomodules which compose the CEBAF linear accelerator. SRF cavities are particularly sensitive to internal and external vibrations that can result in a phenomenon called microphonics which degrade the operational stability of a cryomodule.

The purpose of this thesis is to investigate the significance of mechanical disturbances on …


Experimental And Computational Aerodynamic Studies Of Axially-Oriented Low-Fineness-Ratio Cylinders, Forrest Miller 2023 Old Dominion University

Experimental And Computational Aerodynamic Studies Of Axially-Oriented Low-Fineness-Ratio Cylinders, Forrest Miller

Mechanical & Aerospace Engineering Theses & Dissertations

For the successful completion of atmospheric entry, descent, and landing (EDL) missions, a body geometry must be selected which provides favorable dynamic aerodynamic properties. The types of experimental facilities capable of collecting information on these properties are limited; however, their numbers are growing thanks to the continued work by the aerodynamics community. NASA Langley Research Center (LaRC) is conducting dynamic aerodynamic testing using a subsonic magnetic suspension and balance system (MSBS), with the end goal of implementing a supersonic MSBS facility at NASA Glenn Research Center. MSBSs are also currently used at the Institute of Fluid Science (IFS) at Tohoku …


Digital Commons powered by bepress