Open Access. Powered by Scholars. Published by Universities.®

Elementary Particles and Fields and String Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

1,046 Full-Text Articles 2,555 Authors 179,073 Downloads 83 Institutions

All Articles in Elementary Particles and Fields and String Theory

Faceted Search

1,046 full-text articles. Page 22 of 43.

Primordial Black Hole Atoms, David Zwick, Tyler Hanover, Brian Nepper 2018 Rowan University

Primordial Black Hole Atoms, David Zwick, Tyler Hanover, Brian Nepper

STEM Student Research Symposium Posters

Primordial black holes are thought to have been formed at the early stages of the universe in the presence of non-homogeneous density distributions of dark matter. We are working under the assumption that dark matter consists of elementary low mass particles, specifically, spin 1/2 fermions. We further assume that dark matter is electrically neutral, thus its main interaction is gravitational. We investigate dark matter spin 1/2 fermions in orbit around a black hole atom and consider mass ranges for which the quantum description is appropriate. Solutions to the Dirac equation are utilized to describe the radial mass distribution of primordial …


Nucleon And Nuclear Structure Through Dilepton Production, I. V. Anikin, N. Baltzell, M. Boer, R. Boussarie, V. M. Braun, S. J. Brodsky, A. Camsonne, W. C. Chang, L. Colaneri, C. E. Hyde 2018 Old Dominion University

Nucleon And Nuclear Structure Through Dilepton Production, I. V. Anikin, N. Baltzell, M. Boer, R. Boussarie, V. M. Braun, S. J. Brodsky, A. Camsonne, W. C. Chang, L. Colaneri, C. E. Hyde

Physics Faculty Publications

Transverse momentum distributions and generalized parton distributions provide a comprehensive framework for the three-dimensional imaging of the nucleon and the nucleus experimentally using deeply virtual semi-exclusive and exclusive processes. The advent of combined high luminosity facilities and large acceptance detector capabilities enables experimental investigation of the partonic structure of hadrons with time-like virtual probes, in complement to the rich on-going space-like virtual probe program. The merits and benefits of the dilepton production channel for nuclear structure studies are discussed within the context of the International Workshop on Nucleon and Nuclear Structure through Dilepton Production taking place at the European Center …


New Result For The Neutron Β-Asymmetry Parameter A0 From Ucna, M. A.-P. Brown, E. B. Dees, E. Adamek, B. Allgeier, M. Blatnik, T. J. Bowles, L. J. Broussard, R. Carr, S. Clayton, C. Cude-Woods, S. Currie, X. Ding, B. W. Filippone, A. García, P. Geltenbort, S. Hasan, K. P. Hickerson, J. Hoagland, R. Hong, G. E. Hogan, A. T. Holley, T. M. Ito, A. Knecht, C. -Y. Liu, J. Liu, M. Makela, J. W. Martin, D. Melconian, M. P. Mendenhall, S. D. Moore, Subash C. Nepal, N. Nouri, Bradley R. Plaster 2018 University of Kentucky

New Result For The Neutron Β-Asymmetry Parameter A0 From Ucna, M. A.-P. Brown, E. B. Dees, E. Adamek, B. Allgeier, M. Blatnik, T. J. Bowles, L. J. Broussard, R. Carr, S. Clayton, C. Cude-Woods, S. Currie, X. Ding, B. W. Filippone, A. García, P. Geltenbort, S. Hasan, K. P. Hickerson, J. Hoagland, R. Hong, G. E. Hogan, A. T. Holley, T. M. Ito, A. Knecht, C. -Y. Liu, J. Liu, M. Makela, J. W. Martin, D. Melconian, M. P. Mendenhall, S. D. Moore, Subash C. Nepal, N. Nouri, Bradley R. Plaster

Physics and Astronomy Faculty Publications

Background: The neutron β-decay asymmetry parameter A0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ ≡ gA/gV, which under assumption of the conserved vector current hypothesis (gV = 1) determines gA. Precise values for gA are important as a benchmark for lattice QCD calculations and as a test of the standard model.

Purpose: The UCNA experiment, carried out at the …


Pulse Height Spectra Analysis Of A Neutron Energy Tuning Assembly, Jason R. Stickney 2018 Air Force Institute of Technology

Pulse Height Spectra Analysis Of A Neutron Energy Tuning Assembly, Jason R. Stickney

Theses and Dissertations

An energy tuning assembly (ETA) was previously designed and built for the purpose of irradiating samples with a combination of a thermonuclear and a prompt fission neutron spectrum. Initial research was performed to characterize the performance of the ETA at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron using 33 MeV deuteron breakup on tantalum as the neutron source. This research analyzes detector responses collected from three EJ-309 detectors used to characterize the ETA generated neutron field. A signal processing chain was developed to reduce the full waveform data into a pulse height spectrum. The primary goal was to develop a …


Search For Long-Lived, Massive Particles Decaying Into Dimuon Vertices In Pp Collisions At 13 Tev With The Atlas Detector At The Lhc, Nathan Bernard 2018 University of Massachusetts Amherst

Search For Long-Lived, Massive Particles Decaying Into Dimuon Vertices In Pp Collisions At 13 Tev With The Atlas Detector At The Lhc, Nathan Bernard

Doctoral Dissertations

A search for long-lived, massive particles decaying into dimuon pairs, in 32.9 fb-1 of data analyzed from the ATLAS detector is presented. Two signal models are considered: GGM SUSY, where the long lived particle mass is between 300-1000 GeV, and the dark photon model, where the ZD mass is between 20-60 GeV. An excess over the predicted background is observed in the GGM channel, however the angular/kinematic distributions of the excess vertices are consistent with a detec- tor/conditions related issue. A modified selection is used for the GGM channel which increases the signal sensitivity. 95% confidence level (CL) …


Phenomenology Of Neutron-Antineutron Conversion, Susan Gardner, Xinshuai Yan 2018 University of Kentucky

Phenomenology Of Neutron-Antineutron Conversion, Susan Gardner, Xinshuai Yan

Physics and Astronomy Faculty Publications

We consider the possibility of neutron-antineutron (nn¯) conversion, in which the change of a neutron into an antineutron is mediated by an external source, as can occur in a scattering process. We develop the connections between nn¯ conversion and nn¯ oscillation, in which a neutron spontaneously transforms into an antineutron, noting that if nn¯ oscillation occurs in a theory with baryon number minus lepton number (B-L) violation, then nn¯ conversion can occur also. We show how an experimental limit on nn¯ …


Universality Of Quantum Information In Chaotic Cfts, Nima Lashkari, Anatoly Dymarsky, Hong Liu 2018 Massachusetts Institute of Technology

Universality Of Quantum Information In Chaotic Cfts, Nima Lashkari, Anatoly Dymarsky, Hong Liu

Physics and Astronomy Faculty Publications

We study the Eigenstate Thermalization Hypothesis (ETH) in chaotic conformal field theories (CFTs) of arbitrary dimensions. Assuming local ETH, we compute the reduced density matrix of a ball-shaped subsystem of finite size in the infinite volume limit when the full system is an energy eigenstate. This reduced density matrix is close in trace distance to a density matrix, to which we refer as the ETH density matrix, that is independent of all the details of an eigenstate except its energy and charges under global symmetries. In two dimensions, the ETH density matrix is universal for all theories with the …


Anomalous Electromagnetic Transport In Compact Stars, Efrain J. Ferrer, Vivian de la Incera 2018 CUNY Graduate Center

Anomalous Electromagnetic Transport In Compact Stars, Efrain J. Ferrer, Vivian De La Incera

Publications and Research

We study the anomalous electromagnetic transport properties of a quark-matter phase that can be realized in the presence of a magnetic field in the low-temperature/moderate-high-density region of the Quantum Chromodynamics (QCD) phase map. In this so-called Magnetic Dual Chiral Density Wave phase, an inhomogeneous condensate is dynamically induced producing a nontrivial topology, a consequence of the asymmetry of the lowest Landau level modes of the quasiparticles in this phase. The nontrivial topology manifests in the electromagnetic effective action via a chiral anomaly term θFµνµν, with an axion field θ given by the phase of the Dual …


The 3d Stress-Tensor Bootstrap, Anatoly Dymarsky, Filip Kos, Petr Kravchuk, David Poland, David Simmons-Duffin 2018 University of Kentucky

The 3d Stress-Tensor Bootstrap, Anatoly Dymarsky, Filip Kos, Petr Kravchuk, David Poland, David Simmons-Duffin

Physics and Astronomy Faculty Publications

We study the conformal bootstrap for 4-point functions of stress tensors in parity-preserving 3d CFTs. To set up the bootstrap equations, we analyze the constraints of conformal symmetry, permutation symmetry, and conservation on the stress-tensor 4-point function and identify a non-redundant set of crossing equations. Studying these equations numerically using semidefinite optimization, we compute bounds on the central charge as a function of the independent coefficient in the stress-tensor 3-point function. With no additional assumptions, these bounds numerically reproduce the conformal collider bounds and give a general lower bound on the central charge. We also study the effect of gaps …


Cosmic Ray Muons In The Standard Model Of Fundamental Particles, Angel Gutarra-Leon, Cioli Barazandeh, Walerian Majewski 2018 George Mason University

Cosmic Ray Muons In The Standard Model Of Fundamental Particles, Angel Gutarra-Leon, Cioli Barazandeh, Walerian Majewski

Exigence

Muons are one of the twelve fundamental particle types of matter, having relatively long free-particle lifetime. A muon decays into three other light particles (leptons) through action of the “weak” force, transmitted by the so-called “heavy photons” - bosons W+/W-. Muons are present in the secondary cosmic ray showers in the atmosphere and reach the sea level. By detecting the delay time between arrival of the muon and an appearance of the decay electron in our single scintillation detector, we measured the muon’s average lifetime at rest in the material of our detector. This compares well …


Variance Reduction And Cluster Decomposition, Keh-Fei Liu, Jian Liang, Yi-Bo Yang 2018 University of Kentucky

Variance Reduction And Cluster Decomposition, Keh-Fei Liu, Jian Liang, Yi-Bo Yang

Physics and Astronomy Faculty Publications

It is a common problem in lattice QCD calculation of the mass of the hadron with an annihilation channel that the signal falls off in time while the noise remains constant. In addition, the disconnected insertion calculation of the three-point function and the calculation of the neutron electric dipole moment with the θ term suffer from a noise problem due to the √V fluctuation. We identify these problems to have the same origin and the √V problem can be overcome by utilizing the cluster decomposition principle. We demonstrate this by considering the calculations of the glueball mass, the …


Time-Resolved Electron (E,2E) Momentum Spectroscopy: Application To Laser-Driven Electron Population Transfer In Atoms, Hua-Chieh Shao, Anthony F. Starace 2018 University of Nebraska - Lincoln

Time-Resolved Electron (E,2E) Momentum Spectroscopy: Application To Laser-Driven Electron Population Transfer In Atoms, Hua-Chieh Shao, Anthony F. Starace

Anthony F. Starace Publications

Owing to its ability to provide unique information on electron dynamics, time-resolved electron momentum spectroscopy (EMS) is used to study theoretically a laser-driven electronic motion in atoms. Specifically, a chirped laser pulse is used to adiabatically transfer the populations of lithium atoms from the ground state to the first excited state. During this process, impact ionization near the Bethe ridge by time-delayed ultrashort, high-energy electron pulses is used to image the instantaneous momentum density of this electronic population transfer. Simulations with 100 fs and 1 fs pulse durations demonstrate the capability of EMS to image the time-varying momentum density, including …


Azimuthal Transverse Single-Spin Asymmetries Of Inclusive Jets And Charged Pions Within Jets From Polarized-Proton Collisions At √S = 500 Gev, L. Adamczyk, J. R. Adams, James K. Adkins, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, N. N. Ajitanand, I. Alekseev, D. M. Anderson, R. Aoyama, A. Aparin, D. Arkhipkin, E. C. Aschenauer, M. U. Ashraf, A. Attri, G. S. Averichev, X. Bai, V. Bairathi, K. Barish, A. Behera, R. Bellwied, A. Bhasin, A. K. Bhati, P. Bhattarai, J. Bielcik, J. Bielcikova, L. C. Bland, I. G. Bordyuzhin, J. Bouchet, J. D. Brandenburg, Renee H. Fatemi, Suvarna Ramachandran 2018 AGH University of Science and Technology, Poland

Azimuthal Transverse Single-Spin Asymmetries Of Inclusive Jets And Charged Pions Within Jets From Polarized-Proton Collisions At √S = 500 Gev, L. Adamczyk, J. R. Adams, James K. Adkins, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, N. N. Ajitanand, I. Alekseev, D. M. Anderson, R. Aoyama, A. Aparin, D. Arkhipkin, E. C. Aschenauer, M. U. Ashraf, A. Attri, G. S. Averichev, X. Bai, V. Bairathi, K. Barish, A. Behera, R. Bellwied, A. Bhasin, A. K. Bhati, P. Bhattarai, J. Bielcik, J. Bielcikova, L. C. Bland, I. G. Bordyuzhin, J. Bouchet, J. D. Brandenburg, Renee H. Fatemi, Suvarna Ramachandran

Physics and Astronomy Faculty Publications

We report the first measurements of transverse single-spin asymmetries for inclusive jet and jet + π± production at midrapidity from transversely polarized proton-proton collisions at √s = 500  GeV. The data were collected in 2011 with the STAR detector sampled from 23  pb−1 integrated luminosity with an average beam polarization of 53%. Asymmetries are reported for jets with transverse momenta 6 < pT < 55  GeV/c and pseudorapidity |η| < 1. Presented are measurements of the inclusive-jet azimuthal transverse single-spin asymmetry, sensitive to twist-3 initial-state quark-gluon correlators; the Collins asymmetry, sensitive to quark transversity coupled to the polarized Collins fragmentation function; and the first measurement of the “Collins-like” asymmetry, sensitive to linearly polarized gluons. Within the present statistical precision, inclusive-jet and Collins-like asymmetries are small, with the latter allowing the first experimental constraints on gluon linear polarization in a polarized proton. At higher values of jet transverse momenta, we observe the first nonzero Collins asymmetries in polarized-proton collisions, with a statistical significance of greater than 5σ. The results span a range of x similar to results from semi-inclusive deep-inelastic scattering but at much higher Q2. The Collins results enable tests of …


Light-Nuclei Spectra From Chiral Dynamics, M. Piarulli, A. Baroni, L. Girlanda, A. Kievsky, A. Lovato, Ewing Lusk, L. E. Marcucci, Steven C. Pieper, R. Schiavilla, M, Viviani, R. B. Wiringa 2018 Old Dominion University

Light-Nuclei Spectra From Chiral Dynamics, M. Piarulli, A. Baroni, L. Girlanda, A. Kievsky, A. Lovato, Ewing Lusk, L. E. Marcucci, Steven C. Pieper, R. Schiavilla, M, Viviani, R. B. Wiringa

Physics Faculty Publications

In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. In this Letter, we present Green's function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levels and …


Universality Of Fast Quenches From The Conformal Perturbation Theory, Anatoly Dymarsky, Michael Smolkin 2018 University of Kentucky

Universality Of Fast Quenches From The Conformal Perturbation Theory, Anatoly Dymarsky, Michael Smolkin

Physics and Astronomy Faculty Publications

We consider global quantum quenches, a protocol when a continuous field theoretic system in the ground state is driven by a homogeneous time-dependent external interaction. When the typical inverse time scale of the interaction is much larger than all relevant scales except for the UV-cutoff the system’s response exhibits universal scaling behavior. We provide both qualitative and quantitative explanations of this universality and argue that physics of the response during and shortly after the quench is governed by the conformal perturbation theory around the UV fixed point. We proceed to calculate the response of one and two-point correlation functions confirming …


Polarizing Majorana Fermions, William Miyahira 2018 University of Puget Sound

Polarizing Majorana Fermions, William Miyahira

Summer Research

Classically, a spin-1/2 fermion can interact electromagnetically via four methods: its charge, electric and magnetic dipole moments, and anapole moment. One can polarize a collection of these particles, such that their spins align, by applying an external field or current. The particle experiences a torque that aligns its spin with the direction of the applied field or current. A Majorana fermion is a particle that is its own antiparticle, which means that it can only interact with currents via its anapole moment. These particles are natural candidates for dark matter particles given their electromagnetic properties. One could indirectly observe dark …


Warp Drive Spacetimes, Nicholas A.S. Driver 2018 Virginia Commonwealth University

Warp Drive Spacetimes, Nicholas A.S. Driver

Theses and Dissertations

The concept of faster than light travel in general relativity is examined, starting with a review of the Alcubierre metric. This spacetime, although incredible in its implications, has certain unavoidable problems which are discussed in detail. It is demonstrated that in order to describe faster than light travel without any ambiguities, a coordinate independent description is much more convenient. An alternative method of describing superluminal travel is then proposed, which has similarities to the Krasnikov tube.


Η' Decay To Π+Π-Π+Π−, Ehsan Jafari 2018 University of Kentucky

Η' Decay To Π+Π-Π+Π−, Ehsan Jafari

Theses and Dissertations--Physics and Astronomy

With the use of chiral theory of mesons [1], [2] we evaluate the decay rate of η′ → π+ππ+π. Our theoretical study of this problem is different from the previous theo- retical study [3] and our predicted result is in a good agreement with the experiment. In this chiral theory we evaluate Feynman diagrams up to one loop and the decay rate is calculated with the use of triangle and box diagrams. The ρ0 meson includes in both type of diagrams as a resonance state. Divergent integrals in the loop calculations …


Scattering Processes And Resonances From Lattice Qcd, Raúl A. Briceño, Jozef J. Dudek, Ross D. Young 2018 Old Dominion University

Scattering Processes And Resonances From Lattice Qcd, Raúl A. Briceño, Jozef J. Dudek, Ross D. Young

Physics Faculty Publications

The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter …


High Field Q Slope And The Effect Of Low-Temperature Baking At 3 Ghz, G. Ciovati, G. Eremeev, F. Hannon 2018 Old Dominion University

High Field Q Slope And The Effect Of Low-Temperature Baking At 3 Ghz, G. Ciovati, G. Eremeev, F. Hannon

Physics Faculty Publications

A strong degradation of the unloaded quality factor with field, called high field Q slope, is commonly observed above Bp ≅ 100 mT in elliptical superconducting niobium cavities at 1.3 and 1.5 GHz. In the present experiments several 3 GHz niobium cavities were measured up to and above Bp ≅ 100 mT. The measurements show that a high field Q slope phenomenon limits the field reach at this frequency, that the high field Q slope onset field depends weakly on the frequency, and that the high field Q slope can be removed by the typical empirical solution of …


Digital Commons powered by bepress