Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,229 Full-Text Articles 3,730 Authors 576,558 Downloads 108 Institutions

All Articles in Condensed Matter Physics

Faceted Search

2,229 full-text articles. Page 88 of 90.

Jamming Phase Diagram, Effective Temperature, And Heterogeneous Dynamics Of Model Glass-Forming Liquids, Thomas K. Haxton 2010 University of Pennsylvania

Jamming Phase Diagram, Effective Temperature, And Heterogeneous Dynamics Of Model Glass-Forming Liquids, Thomas K. Haxton

Publicly Accessible Penn Dissertations

We establish that the behavior of fluids consisting of repulsive spheres under the combined effects of pressure p, temperature T, and applied shear stress s can be organized in a jamming phase diagram parameterized by the dimensionless quantities T/pd^3, s/p, and pd^3/e, where d is the diameter of the spheres and e is the interaction energy scale. The jamming phase diagram describes the three-dimensional parameter space as the product of an equilibrium plane at s/p=0 and a hard sphere plane at pd^3/e=0. Near the hard sphere plane, the jamming phase diagram is universal in …


Microrheology Of Soft Matter, Daniel T.N. Chen 2010 University of Pennsylvania

Microrheology Of Soft Matter, Daniel T.N. Chen

Publicly Accessible Penn Dissertations

This thesis describes the application of microrheology to characterize the mechanical properties of three soft matter systems: an entangled biopolymer solution, a suspension of actively swimming bacteria, and a gel-forming carbon nanotube network. We demonstrate using these distinct model systems that it is possible to employ microrheology to extract both local and bulk information using a combination of one- and two- point measurements and theoretical modeling.

In the first set of experiments, we use microrheology to probe the rheological properties of semi-dilute polymer solutions of $\lambda$-DNA. In these solutions, the depletion interaction leads to a layer of reduced DNA density …


Hydration Dynamics At Fluorinated Protein Surfaces, Oh-Hoon Kwon, Tae Hyeon Yoo, Christina M. Othon, James A. Van Deventer, David A. Tirrell, Ahmed H. Zewail 2010 California Institute of Technology

Hydration Dynamics At Fluorinated Protein Surfaces, Oh-Hoon Kwon, Tae Hyeon Yoo, Christina M. Othon, James A. Van Deventer, David A. Tirrell, Ahmed H. Zewail

Christina M Othon

Water-protein interactions dictate many processes crucial to protein function including folding, dynamics, interactions with other biomolecules, and enzymatic catalysis. Here we examine the effect of surface fluorination on water-protein interactions. Modification of designed coiled-coil proteins by incorporation of 5,5,5-trifluoroleucine or (4S)-2-amino-4-methylhexanoic acid enables systematic examination of the effects of side-chain volume and fluorination on solvation dynamics. Using ultrafast fluorescence spectroscopy, we find that fluorinated side chains exert electrostatic drag on neighboring water molecules, slowing water motion at the protein surface.


Interplay Between Structure And Chemistry Of Materials And Their Physical Properties, Alaska Subedi 2010 University of Tennessee - Knoxville

Interplay Between Structure And Chemistry Of Materials And Their Physical Properties, Alaska Subedi

Doctoral Dissertations

First principles calculations provide a powerful tool for sorting out the interplay of chemical composition and structure with the physical properties of materials. In this dissertation, I discuss the physical properties and their microscopic basis within this framework for following illustrative examples. (i) The Zintl phase hydrides, where I find H is anionic and the formation of covalent sp2 bonds in the Al/Ga/Al-Si planes, which is a highly unusual bonding configuration for these elements. (ii) PbTe, which shows strong coupling between the longitudinal acoustic and transverse optic modes that may explain its low thermal conductivity. (iii) The double perovskites BiPbZnNbO6 …


Glassy Dislocation Dynamics In 2d Colloidal Dimer Crystals, Sharon J. Gerbode, Ugmang Agarwal, Desmond C. Ong, Chekesha M. Liddell, Fernando Escobedo, Itai Cohen 2010 Harvey Mudd College

Glassy Dislocation Dynamics In 2d Colloidal Dimer Crystals, Sharon J. Gerbode, Ugmang Agarwal, Desmond C. Ong, Chekesha M. Liddell, Fernando Escobedo, Itai Cohen

All HMC Faculty Publications and Research

Although glassy relaxation is typically associated with disorder, here we report on a new type of glassy dynamics relating to dislocations within 2D crystals of colloidal dimers. Previous studies have demonstrated that dislocation motion in dimer crystals is restricted by certain particle orientations. Here, we drag an optically trapped particle through such dimer crystals, creating dislocations. We find a two-stage relaxation response where initially dislocations glide until encountering particles that cage their motion. Subsequent relaxation occurs logarithmically slowly through a second process where dislocations hop between caged configurations. Finally, in simulations of sheared dimer crystals, the dislocation mean squared displacement …


Elastic And Magnetic Properties Of Tb6fe(Sb,Bi)2 Using Resonant Ultrasound Spectroscopy., David Michael McCarthy 2010 University of Tennessee, Knoxville

Elastic And Magnetic Properties Of Tb6fe(Sb,Bi)2 Using Resonant Ultrasound Spectroscopy., David Michael Mccarthy

Masters Theses

Tb6FeSb2 and Tb6FeBi2 are novel rare earth compounds with little prior research. These compounds show high and variable curie temperatures for rare-earth compounds. This has lead to a literature review which includes the discussion of: elasticity, resonance, and magnetism. This review is used to discuss the theory and methodology which can relate these various properties to each other. Furthermore, synthesis, x-ray analysis, and RUS sample preparation of Tb6FeSb2 and Tb6FeBi2 were completed.

Resonant Ultrasound Spectroscopy (RUS) elastic studies were taken for Tb6FeSb2 and Tb6FeBi2 as a function temperature from 5-300K, in various magnetic fields ranging from 0-9T. Tb6FeSb2’s and Tb6FeBi2’s …


Structural, Magnetic, And Defect Properties Of Co-Pt-Type Magnetic-Storage Alloys: Density-Functional Theory Study Of Thermal Processing Effects, Aftab Alam, Brent Kraczek, Duane D. Johnson 2010 University of Illinois at Urbana-Champaign

Structural, Magnetic, And Defect Properties Of Co-Pt-Type Magnetic-Storage Alloys: Density-Functional Theory Study Of Thermal Processing Effects, Aftab Alam, Brent Kraczek, Duane D. Johnson

Duane D. Johnson

Using an optimized-basis Korringa-Kohn-Rostoker-coherent-potential approximation method, we calculate formation enthalpies ΔEf, structural, and magnetic properties of paramagnetic (PM) and ferromagnetic, disordered A1 and ordered L10 CoPt, FePd, and FePt systems that are of interest for high-density magnetic-recording media. To address processing effects, we focus on the point defects that dictate thermal properties and planar defects (e.g., c domain and antiphase boundaries) which can serve as pinning centers for magnetic domains and affect storage properties. We determine bulk Curie (Tc) and order-disorder (To-d) transition temperatures within 4% of observed values, and estimates for nanoparticles. Planar-defect energies γhklx show that the favorable …


Robust Isothermal Electric Control Of Exchange Bias At Room Temperature, Xi He, Yi Wang, Christian Binek, Peter A. Dowben 2010 University of Nebraska-Lincoln

Robust Isothermal Electric Control Of Exchange Bias At Room Temperature, Xi He, Yi Wang, Christian Binek, Peter A. Dowben

Christian Binek Publications

Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with highspeed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr2O3 has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive …


Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla 2010 University of Nebraska-Lincoln

Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla

Shireen Adenwalla Papers

Neutron detection in thick boron carbide(BC)/n-type Si heterojunction diodes shows a threefold increase in efficiency with applied bias and longer time constants. The improved efficiencies resulting from long time constants have been conclusively linked to the much longer charge collection times in the BC layer. Neutron detection signals from both the p-type BC layer and the n-type Si side of the heterojunction diode are observed, with comparable efficiencies. Collectively, these provide strong evidence that the semiconducting BC layer plays an active role in neutron detection, both in neutron capture and in charge generation and collection.


Experiments On De Vries Liquid Crystals: A Software Approach, Austin Havens 2010 Cal Poly San Luis Obispo

Experiments On De Vries Liquid Crystals: A Software Approach, Austin Havens

Physics

This paper describes two programs I developed to facilitate the study of liquid crystals. The first program is a graphical user interface to increase the accuracy of the birefringence measurements , which relates to their orientational order, by using a camera. The second program was designed to help study the effects of time varying fields on liquid crystals by matching data from a recorded video to oscilloscope data in order to attach data from image analysis to the voltage applied to the cell.


Search For Dark Matter Annihilation In M5, Daniel Jackson 2010 California Polytechnic State University - San Luis Obispo

Search For Dark Matter Annihilation In M5, Daniel Jackson

Physics

We analyzed the Messier 5 (M5) globular cluster for dark matter annihilation using data from VERITAS (Very Energetic Radiation Imaging Telescope Array System) to improve the flux upper limit previously done by Michael McCutecheon. We used updated software and lower energy thresholds. VERITAS consists of four ground-based gamma-ray telescopes located at the Fred Lawrence Whipple Observatory in southern Arizona. Thirty-five 20 minute observations of M5 from VERITAS are used in our analysis. The observations were collected from February to March in 2009, for a total exposure time of 10.63 hours. Gamma-rays from dark matter annihilation were not found,
but better …


Mechanical Stiffness And Dissipation In Ultrananocrystalline Diamond Films, Vivek P. Adiga 2010 University of Pennsylvania

Mechanical Stiffness And Dissipation In Ultrananocrystalline Diamond Films, Vivek P. Adiga

Publicly Accessible Penn Dissertations

Tetragonal sp3-bonded diamond has the highest known atomic density. The nature of the bond and its high density enable diamond to have superior physical properties such as the highest Young’s modulus and acoustic velocity of all materials, and excellent tribological properties. Recently, conformal thin diamond films have been grown at CMOS-compatible temperatures in the form known as ultrananocrystalline diamond (UNCD). These make diamond promising for high frequency micro/nanomechanical devices. We have measured the Young’s modulus (E), Poisson’s ratio and the quality factors (Q) for microfabricated overhanging ledges and fixed-free beams composed of UNCD films grown at lower temperatures. The overhanging …


Air-Fluidized Grains As A Model System: Self-Propelling And Jamming, Lynn J. Daniels 2010 University of Pennsylvania

Air-Fluidized Grains As A Model System: Self-Propelling And Jamming, Lynn J. Daniels

Publicly Accessible Penn Dissertations

This thesis examines two concepts -- self-propelling and jamming -- that have been employed to unify disparate non-equilibrium systems, in the context of a monolayer of grains fluidized by a temporally and spatially homogeneous upflow of air. The first experiment examines the single particle dynamics of air-fluidized rods. For Brownian rods, equipartition of energy holds and rotational motion sets a timescale after which directional memory is lost. Air-fluidized rods no longer obey equipartion; they self-propel, moving preferentially along their long axis. We show that self-propelling can be treated phenomenologically as an enhanced memory effect causing directional memory to persist for …


Neutron Scattering Study Of The High Tc Superconductors, Jun Zhao 2010 Department of Physics and Astronomy

Neutron Scattering Study Of The High Tc Superconductors, Jun Zhao

Doctoral Dissertations

We carried out systematic neutron scattering experiments to investigate the magnetic properties and their relationship to the high-$T_c$ superconductivity, when the materials are tuned from their antiferromagnetic (AF) parent compounds to the superconducting regime.

We observed resonance mode in the electron doped cuprate Nd$_{1.85}$Ce$_{0.15}$CuO$_4$, demonstrating that the resonance is a general phenomenon in cuprate superconductors regardless of hole- or electron-doping. In Pr$_{0.88}$LaCe$_{0.12}$CuO$_4$, the local susceptibility displays two distinct energy scales that are broadly consistent with the bosonic modes revealed by scanning tunneling microscopy experiments. These results indicate the presence of very strong electron spin excitations couplings in electron doped cuprates. …


Partial Phonon Density Of States Of 57-Iron And 161-Dysprosium In Dyfe3 By Nuclear Resonant Inelastic X-Ray Scattering Under High Pressure, Elizabeth Anne Tanis 2010 University of Nevada Las Vegas

Partial Phonon Density Of States Of 57-Iron And 161-Dysprosium In Dyfe3 By Nuclear Resonant Inelastic X-Ray Scattering Under High Pressure, Elizabeth Anne Tanis

UNLV Theses, Dissertations, Professional Papers, and Capstones

The dual partial phonon density of states (DOS) from two different Mossbauer isotopes (161Dy and 57Fe) in the same material (DyFe3) was successfully measured using the nuclear resonant inelastic x-ray scattering (NRIXS) technique at high pressure. Nuclear inelastic scattering measurements yield an in-depth understanding of the element-specific dynamic properties. The Debye temperatures , the Lamb-Mossbauer factor, and the vibrational contributions to the Helmholtz free energy, specific heat , entropy and internal energy are calculated directly from the phonon density of states.


Electron-Induced Electron Yields Of Uncharged Insulating Materials, Ryan Carl Hoffmann 2010 Utah State University

Electron-Induced Electron Yields Of Uncharged Insulating Materials, Ryan Carl Hoffmann

All Graduate Theses and Dissertations

Presented here are electron-induced electron yield measurements from high-resistivity, high-yield materials to support a model for the yield of uncharged insulators. These measurements are made using a low-fluence, pulsed electron beam and charge neutralization to minimize charge accumulation. They show charging induced changes in the total yield, as much as 75%, even for incident electron fluences of /mm2, when compared to an uncharged yield. The evolution of the yield as charge accumulates in the material is described in terms of electron recapture, based on the extended Chung and Everhart model of the electron emission spectrum and the dual dynamic layer …


Hopping Conductivity And Charge Transport In Low Density Polyethylene, Jerilyn Brunson 2010 Utah State University

Hopping Conductivity And Charge Transport In Low Density Polyethylene, Jerilyn Brunson

All Graduate Theses and Dissertations

The properties and behaviors of charge transport mechanisms in highly insulating polymers are investigated by measuring conduction currents through thin film samples of low density polyethylene (LDPE). Measurements were obtained using a constant voltage method with copper electrodes inside a chamber adapted for measurements under vacuum and over a wide range of temperatures and applied fields. Field-dependent behaviors, including Poole-Frenkel conduction, space charge limited current (SCLC), and Schottky charge injection, were investigated at constant temperature. These field-dependent mechanisms were found to predict incorrect values of the dielectric constant and the field dependence of conductivity in LDPE was not found to …


Photon Density Of States Of 47-Iron And 161-Dysprosium In Dyfe3 By Nuclear Resonant Inelastic X-Ray Scattering Under High Pressure, Elizabeth Anne Tanis 2010 University of Nevada Las Vegas

Photon Density Of States Of 47-Iron And 161-Dysprosium In Dyfe3 By Nuclear Resonant Inelastic X-Ray Scattering Under High Pressure, Elizabeth Anne Tanis

UNLV Theses, Dissertations, Professional Papers, and Capstones

The dual partial phonon density of states (DOS) from two different Mossbauer isotopes (161Dy and 57Fe) in the same material (DyFe3) was successfully measured using the nuclear resonant inelastic x-ray scattering (NRIXS) technique at high pressure. Nuclear inelastic scattering measurements yield an in-depth understanding of the element-specific dynamic properties. The Debye temperatures, the Lamb-Mossbauer factor (fLM), and the vibrational contributions to the Helmholtz free energy (Fvib), specific heat (cV ), entropy (Svib) and internal energy (Uvib) are calculated directly from the phonon density of states.


Finite Strain Studies Of Single Crystal Fe3p Under High Pressures, John William Howard 2010 University of Nevada Las Vegas

Finite Strain Studies Of Single Crystal Fe3p Under High Pressures, John William Howard

UNLV Theses, Dissertations, Professional Papers, and Capstones

Fe3P (synthetic schreibersite) is a phosphide occurring in iron alloys. Phosphorousis often considered an undesired impurity causing brittleness. Conversely, in some cases the addition of iron phosphides to certain materials is beneficial (e.g.properties of certain frictional materials are enhanced). In terrestrial rock, we do not find Fe3P, although (Fe;Ni)3P (natural schreibersite) is found in nearly all iron-containing meteorites. In this project, we examine the unit cell parameters of Fe3P as function of pressure and derive the respective axial and bulk compressibilities. Both Vinet and Birch-Murnaghan formulations were used to relate pressure and unit cell volume, and a comparison of each …


A Grazing Incidence X-Ray Streak Camera For Ultrafast, Single-Shot Measurements, J. Feng, K. Engelhorn, B. I. Cho, H. J. Lee, M. Greaves, Christopher P. Weber, R. W. Falcone, H. A. Padmore, P. A. Heimann 2010 Santa Clara University

A Grazing Incidence X-Ray Streak Camera For Ultrafast, Single-Shot Measurements, J. Feng, K. Engelhorn, B. I. Cho, H. J. Lee, M. Greaves, Christopher P. Weber, R. W. Falcone, H. A. Padmore, P. A. Heimann

Physics

An ultrafast x-ray streak camera has been realized using a grazing incidence reflection photocathode. X-rays are incident on a gold photocathode at a grazing angle of 20° and photoemitted electrons are focused by a large aperture magnetic solenoid lens. The streak camera has high quantum efficiency, 600 fs temporal resolution, and 6 mm imaging length in the spectral direction. Its single shot capability eliminates temporal smearing due to sweep jitter, and allows recording of the ultrafast dynamics of samples that undergo nonreversible changes.


Digital Commons powered by bepress