Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,316 Full-Text Articles 3,851 Authors 648,627 Downloads 115 Institutions

All Articles in Condensed Matter Physics

Faceted Search

2,316 full-text articles. Page 48 of 94.

Room-Temperature Self-Powered Energy Photodetector Based On Optically Induced Seebeck Effect In Cd3As2, Niloufar Yavarishad, Tahereh Hosseini, Elaheh Kheirandish, Christopher P. Weber, Nikolai Kouklin 2017 Santa Clara University

Room-Temperature Self-Powered Energy Photodetector Based On Optically Induced Seebeck Effect In Cd3As2, Niloufar Yavarishad, Tahereh Hosseini, Elaheh Kheirandish, Christopher P. Weber, Nikolai Kouklin

Physics

We demonstrate an intrinsically fast Seebeck-type metal–semimetal–metal infrared photodetector based on Cd3As2 crystals. The Seebeck voltage is induced under off-center illumination, leading to asymmetric temperature gradients and a net current flow. The room-temperature responsivity of the sensor is 0.27 mA/W. The photocurrent signal is readily registered at a modulation frequency of 6 kHz, and the intrinsic bandwidth of the sensor is predicted to approach the terahertz range. The photocurrent depends on the optical power and modulation frequency. Our study demonstrates that crystallineCd3As2 is a promising material for high-bandwidth and spectrally broad photosensing, imaging, and …


Nonlinear Dynamics Of Vortices In Different Types Of Grain Boundaries, Ahmad K. Sheikhzada 2017 Old Dominion University

Nonlinear Dynamics Of Vortices In Different Types Of Grain Boundaries, Ahmad K. Sheikhzada

Physics Theses & Dissertations

As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials, …


Modeling Out-Of-Plane Actuation In Thin-Film Nematic Polymer Networks: From Chiral Ribbons To Auto-Origami Boxes Via Twist And Topology, Vianney Gimenez-Pinto, Fangfu Ye, Badel Mbanga, Jonathan Selinger, Robin Selinger 2017 Kent State University

Modeling Out-Of-Plane Actuation In Thin-Film Nematic Polymer Networks: From Chiral Ribbons To Auto-Origami Boxes Via Twist And Topology, Vianney Gimenez-Pinto, Fangfu Ye, Badel Mbanga, Jonathan Selinger, Robin Selinger

Jonathan Selinger

Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions …


Tuning The Effective Anisotropy In A Voltage-Susceptible Exchange-Bias Heterosystem, Will Echtenkamp, Mike Street, Ather Mahmood, Christian Binek 2017 University of Nebraska-Lincoln

Tuning The Effective Anisotropy In A Voltage-Susceptible Exchange-Bias Heterosystem, Will Echtenkamp, Mike Street, Ather Mahmood, Christian Binek

Christian Binek Publications

Voltage- and temperature-tuned ferromagnetic hysteresis is investigated by a superconducting quantum-interference device and Kerr magnetometry in a thin-film heterostructure of a perpendicular anisotropic Co/Pd ferromagnet exchange coupled to the magnetoelectric antiferromagnet Cr2O3. An abrupt disappearance of exchange bias with a simultaneous more than twofold increase in coercivity is observed and interpreted as a competition between the effective anisotropy of Cr2O3 and the exchange-coupling energy between boundary magnetization and the adjacent ferromagnet. The effective anisotropy energy is given by the intrinsic anisotropy energy density multiplied by the effective volume separated from the bulk through …


Experimental Studies Of Electrical Resistivity Behavior Of Cu, Zn And Co Along Their Melting Boundaries: Implications For Heat Flux At Earth’S Inner Core Boundary, Innocent Chinweikpe Ezenwa 2017 The University of Western Ontario

Experimental Studies Of Electrical Resistivity Behavior Of Cu, Zn And Co Along Their Melting Boundaries: Implications For Heat Flux At Earth’S Inner Core Boundary, Innocent Chinweikpe Ezenwa

Electronic Thesis and Dissertation Repository

Abstract

The electrical resistivity of high purity Cu, Zn and Co has been measured at pressures (P) up to 5GPa and at temperatures (T) in the liquid phase. The electrical resistivity of solid state Nb was also measured up to 5GPa and ~1900K. All measurements were made in a large volume cubic anvil press. Using two thermocouples placed at opposite ends of the sample wire, serving as temperature probes as well as resistance leads, a four-wire technique resistivity measurement was employed along with a polarity switch. Post-experiment compositional analyses were carried out on an electron microprobe.

The expected resistivity decrease …


Morphology Of Thin Sheets In The Lame Setup And Beyond, zhanlong qiu 2017 University of Massachusetts Amherst

Morphology Of Thin Sheets In The Lame Setup And Beyond, Zhanlong Qiu

Doctoral Dissertations

We present a general analytical approach to study the wrinkling phenomena in the Lame, sheet on drop, drop on sheet, and twisted ribbon setups. In the partially single-mode wrinkle pattern, we employ the boundary layer analysis to regularize the divergence in the energy and obtain the optimal wavenumber. In the multi-mode wrinkle pattern scenario, we consider the effects of the boundary condition, meniscus, and the geometry of the setup separately on the energies and obtain scaling results for the wavenumber of the multi-mode pattern due to each effect. Lastly, a wrinkle-to-fold transition is discussed in the Lame setup, with our …


Tunneling Assisted Forbidden Transitions In The Single Molecule Magnet Ni4, Yiming Chen 2017 University of Massachusetts Amherst

Tunneling Assisted Forbidden Transitions In The Single Molecule Magnet Ni4, Yiming Chen

Doctoral Dissertations

This dissertation presents work in exploring novel quantum phenomena in singlemolecule magnets (SMMs) and superconducting circuits. The degree of the freedom studied is the magnetic moment of a single molecule and the flux quantum trapped in a superconducting ring. These phenomena provide us with new insights into some basic questions of physics and may also find their application in quantum computing. The molecule we studied is Ni4 ([Ni4(hmp)(dmp)Cl]4) which can be treated as a spin-4 magnet. The large magnetic anisotropy of the molecule leads to bistability of the magnetic moment at low temperatures, with spin-up and spin-down states separated by …


A New Physical Model For Dc Partial Discharge In Polymeric Insulators, Allen Andersen, JR Dennison 2017 Utah State University

A New Physical Model For Dc Partial Discharge In Polymeric Insulators, Allen Andersen, Jr Dennison

Presentations

The physics of DC partial discharge (DCPD) continues to pose a challenge to researchers. We present a new physically-motivated model of DCPD in amorphous polymers based on our dual-defect model of dielectric breakdown. The dual-defect model is an extension of standard static mean field theories, such as the Crine model, that describe avalanche breakdown of charge carriers trapped on uniformly distributed defect sites. It assumes the presence of both high-energy chemical defects and low-energy thermally-recoverable physical defects. We present our measurements of breakdown and DCPD for several common polymeric materials in the context of this model. Improved understanding of DCPD …


Model For Charge Injection With Electron Beams Into Highly Disordered Insulating Materials, JR Dennison 2017 Utah State Univesity

Model For Charge Injection With Electron Beams Into Highly Disordered Insulating Materials, Jr Dennison

Presentations

The Walden-Wintle model for charge injection and transport through highly disordered insulating materials has been extended to include charge injection with a charged particle beam. The original model is applicable to charge injection into a dielectric material from a pair of electrodes in a parallel-plate geometry. It provides a versatile approach to predict the time-dependent current at a rear grounded electrode and the incident surface voltage, as the injection current density evolves over time with the development of a space charge barrier near the injection electrode. The Walden-Wintle model has been applied to many standard cases including Fowler-Nordheim injection, Schottky …


Properties Of Spacecraft Materials Exposed To Ionizing Radiation, Alex Souvall, Gregory Wilson, Katie Gamaunt, Ben Russon, Heather Tippets, JR Dennison 2017 Utah State University

Properties Of Spacecraft Materials Exposed To Ionizing Radiation, Alex Souvall, Gregory Wilson, Katie Gamaunt, Ben Russon, Heather Tippets, Jr Dennison

Katie Gamaunt

The effects of ionizing radiation damage on the various properties of spacecraft materials resulting from exposure in the Space Survivability Testing chamber (SST) are being studied with both ex situ and in situ tests. The SST is a ground based test facility designed to mimic low earth orbit (LEO), and geosynchronous orbit to test potential environmental-induced modifications to small satellites , and materials. Tests described here expose spacecraft materials to a Sr90 ionizing beta radiation source at room temperature and in high vacuum. Ex situ optical transmission/reflectivity measurements glass samples will monitor optical darkening. Properties of polymeric samples will …


The Space Survivability Test Chamber, Katie Gamaunt, Heather Tippets, Alex Souvall, Ben Russon, JR Dennison 2017 Utah State University

The Space Survivability Test Chamber, Katie Gamaunt, Heather Tippets, Alex Souvall, Ben Russon, Jr Dennison

Katie Gamaunt

The Space Survivability Test chamber is a new ground-based research instrument being used for accelerated testing of environment-induced modifications of diverse samples. The chamber simulates space environment conditions, including neutral gas atmospheres and vacuum (<10-5 Pa) environments, temperature (~100 K to >450 K), ionizing radiation, electron fluxes (<10 eV to ~2½ MeV), and vacuum ultraviolet through mid-infrared photon fluxes. This versatile test chamber is well-suited for cost-effective testing of complete systems up to the size (< 20 cm dia.) of a 1U CubeSat, smaller components or electronics, and individual material samples. Multiple in-flux or in-situ space survivability and radiation exposure tests can be performed simultaneously, …


Measurement Of Effects Of Long Term Ionizing Radiation On High Efficiency Solar Arrays, Ben Russon, Heather Tippets, Gregory Wilson, Katie Gamaunt, Alex Souvall, JR Dennison 2017 Utah State University

Measurement Of Effects Of Long Term Ionizing Radiation On High Efficiency Solar Arrays, Ben Russon, Heather Tippets, Gregory Wilson, Katie Gamaunt, Alex Souvall, Jr Dennison

Katie Gamaunt

Degradation of power output efficiency for high-efficiency multilayer solar arrays due to ionizing radiation is measured using the Space Survivability Test chamber. Exposure to ionizing radiation disrupts the crystalline structure and can reduce solar array power output to the point that it no longer provides adequate output capacity. This can be a significant concern, particularly in the harsh environment of space where radiation dose rate is significantly higher and replacing components is often impossible. Ionizing radiation is simulated in a controlled environment to allow measurement and characterization of the power output of solar arrays, using a 100 mCi encapsulated Sr90 …


Uv Degradation Effects: Terrestrial Versus Space Environment, Katie Gamaunt, Krysta Moser, Alex Souvall, JR Dennison 2017 Utah State University

Uv Degradation Effects: Terrestrial Versus Space Environment, Katie Gamaunt, Krysta Moser, Alex Souvall, Jr Dennison

Katie Gamaunt

The decrease in visible and ultraviolet transmission spectra of polymeric and glass spacecraft materials has been measured to determine the extent of degradation due to high energy UV radiation similar to the solar spectrum (both above and below the stratosphere). This project looked at the effects that the atmosphere has in regards to blocking UV radiation and thus, slowing down the UV degradation process. Materials such as quartz, borosilicate glass, sodium glasses, polyethylene, polyimide, and polyethylene terephthalate polymers were exposed to radiation from a focused high intensity deuterium lamp source, which generates radiation in the UVA and UVB spectrum. Duplicates …


Model For Charge Injection With Electron Beams Into Highly Disordered Insulating Materials, JR Dennison 2017 Utah State Univesity

Model For Charge Injection With Electron Beams Into Highly Disordered Insulating Materials, Jr Dennison

Presentations

No abstract provided.


Novel Physical Model For Dc Partial Discharge In Polymeric Insulators, Allen Andersen, JR Dennison 2017 Utah State Univesity

Novel Physical Model For Dc Partial Discharge In Polymeric Insulators, Allen Andersen, Jr Dennison

Presentations

No abstract provided.


Effect Of Disorder On The Resistivity Of Cofecral Films, Y. Jin, R. Skomski, P. Kharel, S.R. Valloppilly, D. J. Sellmyer 2017 University of Nebraska-Lincoln

Effect Of Disorder On The Resistivity Of Cofecral Films, Y. Jin, R. Skomski, P. Kharel, S.R. Valloppilly, D. J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Structural and electron-transport properties of thin films of the ferrimagnetic Heusler compound CoFeCrAl have been investigated to elucidate structure-property relationships. The alloy is, ideally, a spin-gapless semiconductor, but structural disorder destroys the spin-gapless character and drastically alters the transport behavior. Two types of CoFeCrAl films were grown by magnetron sputtering deposition at 973 K, namely polycrystalline films on Si substrates and epitaxial films on MgO (001) substrates. The resistivity decreases with increasing temperature, with relatively small temperature coefficients of –0.19 cm=K for the polycrystalline films and –0.12 cm=K for the epitaxial films. The residual resistivity of the polycrystalline films deposited …


Universal Slip Dynamics In Metallic Glasses And Granular Matter – Linking Frictional Weakening With Inertial Effects, Dmitri V. Denisov, Kinga A. Lorincz, Wendelin J. Wright, Todd C. Hufnagel, Aya Nawano, Xiaojun Gu, Jonathan T. Uhl, Karin A. Dahmen, Peter Schall 2017 Bucknell University

Universal Slip Dynamics In Metallic Glasses And Granular Matter – Linking Frictional Weakening With Inertial Effects, Dmitri V. Denisov, Kinga A. Lorincz, Wendelin J. Wright, Todd C. Hufnagel, Aya Nawano, Xiaojun Gu, Jonathan T. Uhl, Karin A. Dahmen, Peter Schall

Faculty Journal Articles

Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of the material. By resolving and comparing the full time evolution of avalanches in bulk metallic glasses and granular materials, we uncover a regime of universal deformation dynamics. We experimentally verify the predicted universal scaling functions for the dynamics of individual avalanches in both systems, and show that both …


Synergistic Models Of Electron Emission And Transport Measurements Of Disordered Sio2, JR Dennison, Jodie Corbridge Gillespie, Allen Andersen, Amberly Evans Jensen, Gregory Wilson, Justin Dekany, Alec M. Sim, Ryan Hoffmann 2017 Utah State Univesity

Synergistic Models Of Electron Emission And Transport Measurements Of Disordered Sio2, Jr Dennison, Jodie Corbridge Gillespie, Allen Andersen, Amberly Evans Jensen, Gregory Wilson, Justin Dekany, Alec M. Sim, Ryan Hoffmann

Jodie Corbridge Gillespie

A critical component in the prediction and mitigation of spacecraft charging issues is an accurate model of the charging, transport and electron emission properties of a broad array of materials used in the construction of spacecraft. The increased sensitivity, longer-duration missions, and ventures into more demanding environments only serve to heighten this need. One important way for the spacecraft charging community to address this issue is to expand the role of more fundamental materials physics. This includes the development of unifying theoretical models of the charge transport equations based on the creation, distribution, and occupancy of defect densities of states. …


Designing Novel Nanostructured Permanent Magnets, Ali Al Kadhim 2017 University of Nebraska at Omaha

Designing Novel Nanostructured Permanent Magnets, Ali Al Kadhim

UNO Student Research and Creative Activity Fair

Rare earth element based alloys have been the source of high performance magnetic alloys, and have played a paramount role in the development of various technologies, including: memory devices (such as credit cards, random-access memory), sensors, and various biomedical applications. However, there is a tremendous need to replace rare earth metals with material with powerful magnetic properties. Our group recently found CrTe-based materials that show very promising magnetic properties in nanostructured form. The magnetic modeling of such material in nanostructured form prior to their fabrication demonstrates their magnetic properties in bulk form. In this project, we investigate the behavior of …


Predictive Formula For Electron Range Over A Large Span Of Energies, Anne C. Starley, Gregory Wilson, Lisa Montierth Phillipps, JR Dennison 2017 Utah State University

Predictive Formula For Electron Range Over A Large Span Of Energies, Anne C. Starley, Gregory Wilson, Lisa Montierth Phillipps, Jr Dennison

Anne Starley

An empirical model developed by the Materials Research Group that predicts the approximate electron penetration depth—or range—of some common materials has been extended to predict the range for a broad assortment of other materials. The electron range of a material is the maximum distance electrons can travel through a material, before losing all of their incident kinetic energy. The original model used the Continuous-Slow-Down-Approximation for energy deposition in a material to develop a composite analytical formula which estimated the range from 10 MeV with an uncertainty of v, which describes the effective number of valence electrons. NV was empirically …


Digital Commons powered by bepress