Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

879 Full-Text Articles 1,894 Authors 294,702 Downloads 128 Institutions

All Articles in Biological and Chemical Physics

Faceted Search

879 full-text articles. Page 5 of 33.

Hobby Grade Lithium-Ion Batteries For Spacecraft Applications: Establishing An Automated Electrical Characteristics Testing Procedure For Flight Acceptance Of Non-Space-Grade Small Secondary Batteries, Braidon Hughes 2021 University of Arkansas, Fayetteville

Hobby Grade Lithium-Ion Batteries For Spacecraft Applications: Establishing An Automated Electrical Characteristics Testing Procedure For Flight Acceptance Of Non-Space-Grade Small Secondary Batteries, Braidon Hughes

Graduate Theses and Dissertations

Li-ion batteries are widely used due to the large amount of rechargeable energy they pack into a small, light package. This higher energy density makes Li-ion batteries ideal for small satellite applications, specifically CubeSats. CubeSats have grown in popularity in higher level education due to the National Aeronautics and Space Administration’s implementation of the Cube Satellite Launch Initiative, making it easier and cheaper to conduct small, low orbit missions. Because these CubeSats are occupying the same space as a crewed spacecraft, it is imperative that they are safe. There are numerous reports of Li-ion batteries creating fires that result in …


Analysis Of Bacteriorhodopsin Suspended In A Bilayer Lipid Membrane, Moath Alhejji 2021 University of Arkansas, Fayetteville

Analysis Of Bacteriorhodopsin Suspended In A Bilayer Lipid Membrane, Moath Alhejji

Graduate Theses and Dissertations

The bacteriorhodopsin protein’s unique characteristic of proton pumping can convert light energy to electric energy. The aim of this research was to generate photocurrent using bacteriorhodopsin in a bi-layer lipid membrane. Lipid monolayer and bilayer were formed using painting and folding methods, respectively. Capacitance and resistance of the lipid membranes were measured and used to validate the best methodology. My results show that the folding method is more efficient in incorporating Bacteriorhodopsin. The photocurrent was generated by illuminating a green laser (532 nm) on the bilayer lipid membranes. The patch clamp electrophysiology technique was used to apply voltage across the …


Investigation Of Optical And Structural Properties Of Gesn Heterostructures, Oluwatobi Gabriel Olorunsola 2021 University of Arkansas, Fayetteville

Investigation Of Optical And Structural Properties Of Gesn Heterostructures, Oluwatobi Gabriel Olorunsola

Graduate Theses and Dissertations

Silicon (Si)-based optoelectronics have gained traction due to its primed versatility at developing light-based technologies. Si, however, features indirect bandgap characteristics and suffers relegated optical properties compared to its III-V counterparts. III-Vs have also been hybridized to Si platforms but the resulting technologies are expensive and incompatible with standard complementary-metal-oxide-semiconductor processes. Germanium (Ge), on the other hand, have been engineered to behave like direct bandgap material through tensile strain interventions but are well short of attaining extensive wavelength coverage. To create a competitive material that evades these challenges, transitional amounts of Sn can be incorporated into Ge matrix to form …


A Neutral Model Of 100 Million Years Of Chromosome Inversions In The Yeast Genus Lachancea, Brian Clark 2021 Illinois State University

A Neutral Model Of 100 Million Years Of Chromosome Inversions In The Yeast Genus Lachancea, Brian Clark

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Reinvigorating A Technical Countering Weapons Of Mass Destruction Distance Learning Graduate Certificate Program, James C. Petrosky, Gaiven Varshney, Jeremy Slagley, Sara Shaghaghi 2021 Air Force Institute of Technology

Reinvigorating A Technical Countering Weapons Of Mass Destruction Distance Learning Graduate Certificate Program, James C. Petrosky, Gaiven Varshney, Jeremy Slagley, Sara Shaghaghi

Faculty Publications

Current Countering Weapons of Mass Destruction (CWMD) demands can be divided broadly into policy and science. The science of chemical, biological, and radiological/nuclear weapons informs the limits of development, production, employment, operation, detection, risk characterization, human and material protection, and medical intervention. In short, the science of weapons of mass destruction (WMD) should precede and inform the development of policy. It is to this end that the Air Force Institute of Technology (AFIT) CWMD program was re-established, providing a technical educational option for practitioners to understand the science behind a very technically challenging subject.


Critical Behavior In Evolutionary And Population Dynamics, Stephen Ordway 2021 University of Missouri-St. Louis

Critical Behavior In Evolutionary And Population Dynamics, Stephen Ordway

Dissertations

This study is an exploration of phase transition behavior in evolutionary and population dynamics, and techniques for predicting population changes, across the disciplines of physics, biology, and computer science. Under the looming threat of climate change, it is imperative to understand the dynamics of populations under environmental stress and to identify early warning signals of population decline. These issues are explored here in (1) a computational model of evolutionary dynamics, (2) an experimental system of decaying populations under environmental stress, and (3) a machine learning approach to predict population changes based on environmental factors. Through the lens of critical phase …


Monte Carlo, Molecular Dynamics And Network Analysis Of The Gramicidin Water Channel And Proton Transfer Pathways To Qb In Photosynthetic Reaction Centers, Yingying Zhang 2021 The Graduate Center, City University of New York

Monte Carlo, Molecular Dynamics And Network Analysis Of The Gramicidin Water Channel And Proton Transfer Pathways To Qb In Photosynthetic Reaction Centers, Yingying Zhang

Dissertations, Theses, and Capstone Projects

Water molecules play a key role in all biochemical processes. They help define the shape of proteins, and they are reactant or product in many reactions and are released as ligands are bound. They facilitate transfer of protons through transmembrane proton channel, pump and transporter proteins. Continuum electrostatics (CE) force fields such as used in MCCE (Multi-Conformation Continuum Electrostatics) capture electrostatic interactions in biomolecules with an implicit solvent, to give the averaged solvent water equilibrium properties. Hybrid CE methods can use explicit water molecules within the protein surrounded by implicit solvent. These hybrid methods permit the study of explicit hydrogen …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang 2021 The Graduate Center, City University of New York

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Therapeautic Cerium Oxide Nanoparticles, Angel E. Vasquez 2021 Kennesaw State University

Therapeautic Cerium Oxide Nanoparticles, Angel E. Vasquez

Symposium of Student Scholars

The overall goal of the research project is to create a glass that produces cerium oxide nanoparticles and as an efficient delivery mechanism. Cerium is able to exist as Ce3+ and Ce4+ because it has two partially filled subshells. This coexistence allows cerium oxide to have antioxidant properties that reduce the number of free radicals in that body that are associated with cancer, diabetes, and neurodegenerative diseases. In our laboratory, using a soluble borate glass, cerium oxide nanoparticles are created to coexist in Ce3+ and Ce4+ valences This borate glass composition is doped with different amounts of Cerium(IV) Oxide and …


Comparing Semi-Automated Segmentation Of Traditional-Resolution And High-Resolution Hyperpolarized 129xe Mri On Covid-19 Survivors, Tingting Wu 2021 Western University

Comparing Semi-Automated Segmentation Of Traditional-Resolution And High-Resolution Hyperpolarized 129xe Mri On Covid-19 Survivors, Tingting Wu

Undergraduate Student Research Internships Conference

Hyperpolarized gas MRI using inert gases like Xe is a valuable tool in visualizing lung ventilation in patients, and can be used as a longitudinal monitoring tool for patients with lung diseases. However, use of this method requires segmentation and quantification of parameters such as ventilation defect percentage (VDP), which is often very subjective depending on the observer. This study aimed to determine the accuracy and consistency of VDP calculation using the same MRI scans from COVID-19 patients, but with high resolution and low (traditional) resolution versions. Using a MATLAB script developed previously, it was found that in general, using …


Numerical Simulation Of Adaptive Metabolic Response To Anti-Angiogenic Treatment In Renal Cell Carcinoma, Saranya Varakunan 2021 Western University

Numerical Simulation Of Adaptive Metabolic Response To Anti-Angiogenic Treatment In Renal Cell Carcinoma, Saranya Varakunan

Undergraduate Student Research Internships Conference

Renal cell carcinoma, a malignant kidney cancer, is often treated using anti-angiogenic drugs to prevent the growth of blood vessels within the tumour. Although tumours initially respond to this treatment, they eventually develop resistance. This resistance is hypothesized to be caused by a switch to a symbiotic metabolism that allows cells to survive even with a low blood supply.

This project seeks to computationally model the transport of oxygen, lactate, and glucose within a tumour in order to examine how cancer metabolism adapts to changes in blood vessels.


Thermal Properties Of 18f-Fdg Uptake And Imaging In Positron Emission Tomography Scans Of Cancerous Cells, Carleigh R. Eagle 2021 University of North Florida

Thermal Properties Of 18f-Fdg Uptake And Imaging In Positron Emission Tomography Scans Of Cancerous Cells, Carleigh R. Eagle

PANDION: The Osprey Journal of Research and Ideas

Positron Emission Tomography (PET) scans can utilize a radioactive tracer, in this case 2-deoxy2-[fluorine-18] fluoro-D-glucose (18F-FDG), to visualize malignant tumors in cancer patients. The uptake was compared to glucose to understand the difference in thermal properties, which contribute to the ability to image the cancerous cells. The uptake of 18F-FDG by cancer cells and the imaging process of positron emission tomography were reviewed from a thermodynamic perspective. Gastrointestinal and neurological imaging techniques were reviewed to understand the role of PET imaging in different areas of the human body.


Advancement Of A 3d Computational Phantom And Its Age Scaling Methodologies For Retrospective Dose Reconstruction Studies, Aashish Gupta 2021 The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences

Advancement Of A 3d Computational Phantom And Its Age Scaling Methodologies For Retrospective Dose Reconstruction Studies, Aashish Gupta

Dissertations & Theses (Open Access)

We have used a 3D age-scalable computational phantom for over two decades for retrospective dose reconstruction studies of childhood cancer survivors (CCS) treated with 2D historic radiotherapy (RT). However, our phantom and its age scaling functions (ASF) must be updated so that it can be used in studies that include survivors treated with contemporary RT. We aimed to implement our phantom and its age scaling functions in DICOM format and determine the feasibility of applying our ASFs to accurately scale the whole-body CT-based anatomies.

In the implementation study, we developed Python scripts that model the phantom and ASFs in a …


Sustainable And Biodegradable Nanocellulose Composite Materials, Jacob Scheel, Tim Kidd Ph.D. 2021 University of Northern Iowa

Sustainable And Biodegradable Nanocellulose Composite Materials, Jacob Scheel, Tim Kidd Ph.D.

Summer Undergraduate Research Program (SURP) Symposium

Nanocellulose is made from a mixture of cellulose powder, and a variety of different materials and liquids. Unfortunately the cost to produce nanocellulose isn’t ideal, thanks to shrinkage. The goal of my research this year was to try to make nanocellulose more cost effective, by reduce shrinkage.


Bridging The 12-6-4 Model And The Fluctuating Charge Model, Pengfei Li 2021 Loyola University Chicago

Bridging The 12-6-4 Model And The Fluctuating Charge Model, Pengfei Li

Chemistry: Faculty Publications and Other Works

Metal ions play important roles in various biological systems. Molecular dynamics (MD) using classical force field has become a popular research tool to study biological systems at the atomic level. However, meaningful MD simulations require reliable models and parameters. Previously we showed that the 12-6 Lennard-Jones nonbonded model for ions could not reproduce the experimental hydration free energy (HFE) and ion-oxygen distance (IOD) values simultaneously when ion has a charge of +2 or higher. We discussed that this deficiency arises from the overlook of the ion-induced dipole interaction in the 12-6 model, and this term is proportional to 1/r …


Awegnn: Auto-Parametrized Weighted Element-Specific Graph Neural Networks For Molecules., Timothy Szocinski, Duc Duy Nguyen, Guo-Wei Wei 2021 University of Kentucky

Awegnn: Auto-Parametrized Weighted Element-Specific Graph Neural Networks For Molecules., Timothy Szocinski, Duc Duy Nguyen, Guo-Wei Wei

Mathematics Faculty Publications

While automated feature extraction has had tremendous success in many deep learning algorithms for image analysis and natural language processing, it does not work well for data involving complex internal structures, such as molecules. Data representations via advanced mathematics, including algebraic topology, differential geometry, and graph theory, have demonstrated superiority in a variety of biomolecular applications, however, their performance is often dependent on manual parametrization. This work introduces the auto-parametrized weighted element-specific graph neural network, dubbed AweGNN, to overcome the obstacle of this tedious parametrization process while also being a suitable technique for automated feature extraction on these internally complex …


Biochemical Impact Of Solar Radiation Exposure On Human Keratinocytes Monitored By Raman Spectroscopy; Effects Of Cell Culture Environment, Ulises Lopez Gonzalez, Alan Casey, Hugh Byrne 2021 Technological University Dublin

Biochemical Impact Of Solar Radiation Exposure On Human Keratinocytes Monitored By Raman Spectroscopy; Effects Of Cell Culture Environment, Ulises Lopez Gonzalez, Alan Casey, Hugh Byrne

Articles

Understanding and amelioration of the effects of solar radiation exposure are critical in preventing the occurrence of skin cancer. Towards this end, many studies have been conducted in 2D cell culture models under simplified and unrealistic conditions. 3D culture models better capture the complexity of in vivo physiology, although the effects of the 3D extracellular matrix have not been well studied. Monitoring the instantaneous and resultant cellular responses to exposure, and the influence of the 3D environment, could provide an enhanced understanding of the fundamental processes of photocarcinogenesis. This work presents an analysis of the biochemical impacts of simulated solar …


Somatic Inhibition By Microscopic Magnetic Stimulation, Hui Ye 2021 Loyola University Chicago

Somatic Inhibition By Microscopic Magnetic Stimulation, Hui Ye

Biology: Faculty Publications and Other Works

Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the …


Recovery Of High Specific Activity Molybdenum-99 From Accelerator-Induced Fission On Low-Enriched Uranium For Technetium-99m Generators, M. Alex Brown, Nathan Johnson, Artem V. Gelis, Milan Stika, Anna G. Servis, Alex Bakken, Christine Krizmanich, Kristin Shannon, Peter Kozak, Amanda Barnhart, Chad Denbrock, Nicolas Luciani, Terry Grimm, Peter Tkac 2021 Argonne National Laboratory

Recovery Of High Specific Activity Molybdenum-99 From Accelerator-Induced Fission On Low-Enriched Uranium For Technetium-99m Generators, M. Alex Brown, Nathan Johnson, Artem V. Gelis, Milan Stika, Anna G. Servis, Alex Bakken, Christine Krizmanich, Kristin Shannon, Peter Kozak, Amanda Barnhart, Chad Denbrock, Nicolas Luciani, Terry Grimm, Peter Tkac

Chemistry and Biochemistry Faculty Research

A new process was developed to recover high specific activity (no carrier added) 99Mo from electron-accelerator irradiated U3O8 or uranyl sulfate targets. The process leverages a novel solvent extraction scheme to recover Mo using di(2-ethylhexyl) phosphoric acid following uranium and transuranics removal with tri-n-butyl phosphate. An anion-exchange concentration column step provides a final purification, generating pure 99Mo intended for making 99Mo/99mTc generators. The process was demonstrated with irradiated uranium targets resulting in more than 95% 99Mo recovery and without presence of fission products or actinides in the product.


The Early Medieval Transition: Diet Reconstruction, Mobility, And Culture Contact In The Ravenna Countryside, Northern Italy, Anastasia Temkina 2021 University of South Florida

The Early Medieval Transition: Diet Reconstruction, Mobility, And Culture Contact In The Ravenna Countryside, Northern Italy, Anastasia Temkina

USF Tampa Graduate Theses and Dissertations

This research project evaluates the effects of increased mobility and culture contact on dietary practices, and on dietary variation among people buried at two northern Italian sites, Chiunsano di Ficarolo and Chiesazza di Ficarolo, located near the ancient Roman capital of Ravenna and dating 4th to 7th century CE. The Early Medieval period was a time of change, political instability, migration and invasion of the “barbarian” tribes, and diet was not unaffected. In particular, it is hypothesized that a new staple crop, millet, was introduced and that meat consumption had increased. The goal of this research is to use stable …


Digital Commons powered by bepress