Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

25621 Full-Text Articles 34653 Authors 2500013 Downloads 211 Institutions

All Articles in Physics

Faceted Search

25621 full-text articles. Page 1 of 648.

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie 2017 University of Dayton

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window.

The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video ...


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie 2017 University of Dayton

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Russell C. Hardie

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window. The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video ...


Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. LeMaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai 2017 University of Dayton

Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai

Russell C. Hardie

We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation ...


Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore 2017 University of Dayton

Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore

Russell C. Hardie

We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark methods, using simulated and real-image sequences. The simulated data are generated with a simulation tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis. The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames ...


Cross-Imaging System Comparison Of Backscatter Coefficient Estimates From A Tissue-Mimicking Material, Kibo Nam, Ivan M. Rosado-Mendez, Lauren A. Wirtzfeld, Viksit Kumar, Ernest L. Madsen, Goutam Ghoshal, Alexander D. Pawlicki, Michael L. Oelze, Roberto J. Lavarello, Timothy A. Bigelow, James A. Zagzebski, William D. O'Brien Jr., Timothy J. Hall 2017 University of Wisconsin–Madison

Cross-Imaging System Comparison Of Backscatter Coefficient Estimates From A Tissue-Mimicking Material, Kibo Nam, Ivan M. Rosado-Mendez, Lauren A. Wirtzfeld, Viksit Kumar, Ernest L. Madsen, Goutam Ghoshal, Alexander D. Pawlicki, Michael L. Oelze, Roberto J. Lavarello, Timothy A. Bigelow, James A. Zagzebski, William D. O'Brien Jr., Timothy J. Hall

Timothy A. Bigelow

A key step toward implementing quantitative ultrasound techniques in a clinical setting is demonstrating that parameters such as the ultrasonic backscatter coefficient (BSC) can be accurately estimated independent of the clinical imaging system used. In previous studies, agreement in BSC estimates for well characterized phantoms was demonstrated across different laboratory systems. The goal of this study was to compare the BSC estimates of a tissue mimicking sample measured using four clinical scanners, each providing RF echo data in the 1-15 MHz frequency range. The sample was previously described and characterized with single-element transducer systems. Using a reference phantom for analysis ...


Effects Of Zn Additions To Highly Magnetoelastic Fega Alloys, Thomas A. Lograsso, Nicholas J. Jones, Deborah L. Schlagel, Gabriela Petculescu, Marilyn Wun-Fogle, James B. Restorff, Arthur E. Clark, Kristi B. Hathaway 2017 Iowa State University

Effects Of Zn Additions To Highly Magnetoelastic Fega Alloys, Thomas A. Lograsso, Nicholas J. Jones, Deborah L. Schlagel, Gabriela Petculescu, Marilyn Wun-Fogle, James B. Restorff, Arthur E. Clark, Kristi B. Hathaway

Thomas A. Lograsso

Fe1−xMx (M = Ga, Ge, Si, Al, Mo and x ∼ 0.18) alloys offer an extraordinary combination ofmagnetoelasticity and mechanical properties. They are rare-earth-free, can be processed using conventional deformation techniques, have high magnetic permeability, low hysteresis, and low magnetic saturation fields, making them attractive for device applications such as actuators and energy harvesters. Starting with Fe-Ga as a reference and using a rigid-band-filling argument, Zhang et al. predicted that lowering the Fermi level by reducing the total number of electrons could enhance magnetoelasticity. To provide a direct experimental validation for Zhang's hypothesis, elemental additions with lower-than-Ga valence are ...


Crossover In The Magnetic Response Of Single-Crystalline Ba1−Xkxfe2as2 And Lifshitz Critical Point Evidenced By Hall Effect Measurements, Yong Liu, Thomas A. Lograsso 2017 Iowa State University

Crossover In The Magnetic Response Of Single-Crystalline Ba1−Xkxfe2as2 And Lifshitz Critical Point Evidenced By Hall Effect Measurements, Yong Liu, Thomas A. Lograsso

Thomas A. Lograsso

We report on the doping evolution of magnetic susceptibility χ(T) and Hall coefficient RH in high-quality Ba1−xKxFe2As2 (0.13≤x≤1) single crystals. It is found that the normal-state magnetic susceptibility of Ba1−xKxFe2As2 compounds undergoes a crossover from linear-T dependence in the undoped and underdoped samples into KFe2As2-type magnetic response in the overdoped samples with increasing K content. Although magnetic susceptibility χ(T) of optimally doped samples (0.34≤x≤0.47) still follows a monotonic increase with increasing temperature, a big hump around 300 K emerges. As x exceeds 0.53, a broad peak forms in ...


Magnetic And Structural Transitions In La0.4na0.6fe2as2 Single Crystals, J.-Q. Yan, S. Nandi, B. Saparov, P. Čermák, Y. Xiao, Y. Su, W. T. Jin, A. Schneidewind, Th. Brückel, R. W. McCallum, T. A. Lograsso, B. C. Sales, D. G. Mandrus 2017 Oak Ridge National Laboratory

Magnetic And Structural Transitions In La0.4na0.6fe2as2 Single Crystals, J.-Q. Yan, S. Nandi, B. Saparov, P. Čermák, Y. Xiao, Y. Su, W. T. Jin, A. Schneidewind, Th. Brückel, R. W. Mccallum, T. A. Lograsso, B. C. Sales, D. G. Mandrus

Thomas A. Lograsso

La0.4Na0.6Fe2As2 single crystals have been grown out of an NaAs flux in an alumina crucible and characterized by measuring magnetic susceptibility, electrical resistivity, specific heat, as well as single-crystal x-ray and neutron diffraction. La0.4Na0.6Fe2As2 single crystals show a structural phase transition from a high-temperature tetragonal phase to a low-temperature orthorhombic phase at Ts=125 K. This structural transition is accompanied by an anomaly in the temperature dependence of electrical resistivity, anisotropic magnetic susceptibility, and specific heat. Concomitant with the structural phase transition, the Fe moments order along the a direction with an ordered moment of 0 ...


Upper Critical Field Of Kfe2as2 Under Pressure: A Test For The Change In The Superconducting Gap Structure, Valentin Taufour, Neda Foroozani, Makariy A. Tanatar, Jinhyuk Lim, Udhara S. Kaluarachchi, Stella K. Kim, Yong Liu, Thomas A. Lograsso, Vladimir G. Kogan, Ruslan Prozorov, Sergey L. Bud'ko, James S. Schilling, Paul C. Canfield 2017 Iowa State University

Upper Critical Field Of Kfe2as2 Under Pressure: A Test For The Change In The Superconducting Gap Structure, Valentin Taufour, Neda Foroozani, Makariy A. Tanatar, Jinhyuk Lim, Udhara S. Kaluarachchi, Stella K. Kim, Yong Liu, Thomas A. Lograsso, Vladimir G. Kogan, Ruslan Prozorov, Sergey L. Bud'ko, James S. Schilling, Paul C. Canfield

Thomas A. Lograsso

ARTICLE TEXT
SUPPLEMENTAL MATERIAL
REFERENCES

ABSTRACT

We report measurements of electrical resistivity under pressure to 5.8 GPa, magnetization to 6.7 GPa, and ac susceptibility to 7.1 GPa in KFe2As2. The previously reported change of slope in the pressure dependence of the superconducting transition temperature Tc(p) at a pressure p∗∼1.8 GPa is confirmed, and Tc(p) is found to be nearly constant above p∗ up to 7.1 GPa. The T−p phase diagram is very sensitive to the pressure conditions as a consequence of the anisotropic uniaxial pressure dependence of Tc. Across p∗, a ...


Fermi Surface Reconstruction In (Ba1−Xkx)Fe2as2 (0.44≤X≤1) Probed By Thermoelectric Power Measurements, Halyna Hodovanets, Yong Liu, Anton Jesche, Sheng Ran, Eun Deok Mun, Thomas A. Lograsso, Sergey L. Bud'ko, Paul C. Canfield 2017 Iowa State University

Fermi Surface Reconstruction In (Ba1−Xkx)Fe2as2 (0.44≤X≤1) Probed By Thermoelectric Power Measurements, Halyna Hodovanets, Yong Liu, Anton Jesche, Sheng Ran, Eun Deok Mun, Thomas A. Lograsso, Sergey L. Bud'ko, Paul C. Canfield

Thomas A. Lograsso

We report in-plane thermoelectric power measurements on single crystals of (Ba1−xKx)Fe2As2(0.44≤x≤1). We observe a minimum in the S|T=const versus x at x∼0.55 that can be associated with the change in the topology of the Fermi surface, a Lifshitz transition, related to the electron pockets at the center of M point crossing the Fermi level. This feature is clearly observable below ∼75 K. Thermoelectric power also shows a change in the x∼0.8–0.9 range, where the maximum in the thermoelectric power collapses into a plateau. This Lifshitz transition ...


Gd5(Si,Ge)4 Thin Film Displaying Large Magnetocaloric And Strain Effects Due To Magnetostructural Transition, Ravi L. Hadimani, Joao H. B. Silva, Andre M. Pereira, Devo L. Schlagel, Thomas A. Lograsso, Yang Ren, David C. Jiles, Joao P. Araújo 2017 Iowa State University

Gd5(Si,Ge)4 Thin Film Displaying Large Magnetocaloric And Strain Effects Due To Magnetostructural Transition, Ravi L. Hadimani, Joao H. B. Silva, Andre M. Pereira, Devo L. Schlagel, Thomas A. Lograsso, Yang Ren, David C. Jiles, Joao P. Araújo

Thomas A. Lograsso

Magnetic refrigeration based on the magnetocaloric effect is one of the best alternatives to compete with vapor-compression technology. Despite being already in its technology transfer stage, there is still room for optimization, namely, on the magnetic responses of the magnetocaloric material. In parallel, the demand for different magnetostrictive materials has been greatly enhanced due to the wide and innovative range of technologies that emerged in the last years (from structural evaluation to straintronics fields). In particular, the Gd5(Six Ge1−x)4 compounds are a family of well-known alloys that present both giant magnetocaloric and colossal magnetostriction effects. Despite their ...


Magnetic Excitations And Anomalous Spin-Wave Broadening In Multiferroic Fev2o4, Qiang Zhang, Mehmet Ramazanoglu, Songxue Chi, Yong Liu, Thomas A. Lograsso, David Vaknin 2017 Iowa State University

Magnetic Excitations And Anomalous Spin-Wave Broadening In Multiferroic Fev2o4, Qiang Zhang, Mehmet Ramazanoglu, Songxue Chi, Yong Liu, Thomas A. Lograsso, David Vaknin

Thomas A. Lograsso

We report on the different roles of two orbital-active Fe2+ at the A site and V3+ at the B site in the magnetic excitations and on the anomalous spin-wave broadening in FeV2O4. FeV2O4 exhibits three structural transitions and successive paramagnetic (PM)–collinear ferrimagnetic (CFI)–noncollinear ferrimagnetic (NCFI)/ferroelectric transitions. The high-temperature tetragonal/PM–orthorhombic/CFI transition is accompanied by the appearance of a large energy gap in the magnetic excitations due to strong spin-orbit-coupling-induced anisotropy at the Fe2+ site. While there is no measurable increase in the energy gap from the orbital ordering of V3+ at the orthorhombic/CFI–tetragonal ...


Formation Mechanism Of Superconducting Phase And Its Three-Dimensional Architecture In Pseudo-Single-Crystal Kxfe2−Yse2, Yong Liu, Qingfeng Xing, Warren E. Straszheim, Jeff Marshman, Pai Pedersen, Richard McLaughlin, Thomas A. Lograsso 2017 Ames Laboratory

Formation Mechanism Of Superconducting Phase And Its Three-Dimensional Architecture In Pseudo-Single-Crystal Kxfe2−Yse2, Yong Liu, Qingfeng Xing, Warren E. Straszheim, Jeff Marshman, Pai Pedersen, Richard Mclaughlin, Thomas A. Lograsso

Thomas A. Lograsso

We report how the superconducting phase forms in pseudo-single-crystal KxFe2−ySe2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase, whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition. It should be ...


Rhombohedral Magnetostriction In Dilute Iron (Co) Alloys, Nicholas J. Jones, Gabriela Petculescu, Marilyn Wun-Fogle, James B. Restorff, Arthur E. Clark, Kristi B. Hathaway, Deborah L. Schlagel, Thomas A. Lograsso 2017 Naval Surface Warfare Center

Rhombohedral Magnetostriction In Dilute Iron (Co) Alloys, Nicholas J. Jones, Gabriela Petculescu, Marilyn Wun-Fogle, James B. Restorff, Arthur E. Clark, Kristi B. Hathaway, Deborah L. Schlagel, Thomas A. Lograsso

Thomas A. Lograsso

Iron is a well-utilized material in structural and magnetic applications. This does not mean, however, that it is well understood, especially in the field of magnetostriction. In particular, the rhombohedral magnetostriction of iron, λ111 , is anomalous in two respects: it is negative in sign, in disagreement with the prediction of first principles theory, and its magnitude decreases with increasing temperature much too rapidly to be explained by a power law dependence on magnetization. These behaviors could arise from the location of the Fermi level, which leaves a small region of the majority 3d t2g states unfilled, possibly favoring small internal ...


Imprinting Bulk Amorphous Alloy At Room Temperature, Song-Yi Kim, Eun-Soo Park, Ryan T. Ott, T. A. Lograsso, Moo-young Huh, Do-Hyang Kim, Jürgen Eckert, Min-Ha Lee 2017 Korea Institute of Industrial Technology

Imprinting Bulk Amorphous Alloy At Room Temperature, Song-Yi Kim, Eun-Soo Park, Ryan T. Ott, T. A. Lograsso, Moo-Young Huh, Do-Hyang Kim, Jürgen Eckert, Min-Ha Lee

Thomas A. Lograsso

We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability ...


A High-Speed X-Ray Detector System For Noninvasive Fluid Flow Measurements, Timothy B. Morgan, Benjamin R. Halls, Terrence R. Meyer, Theodore J. Heindel 2017 Iowa State University

A High-Speed X-Ray Detector System For Noninvasive Fluid Flow Measurements, Timothy B. Morgan, Benjamin R. Halls, Terrence R. Meyer, Theodore J. Heindel

Theodore J. Heindel

The opaque nature of many multiphase flows has long posed a significant challenge to the visualization and measurement of desired characteristics. To overcome this difficulty, X-ray imaging, both in the form of radiography and computed tomography, has been used successfully to quantify various multiphase flow phenomena. However, the relatively low temporal resolution of typical X-ray systems limit their use to moderately slow flows and time-average values. This paper discusses the development of an X-ray detection system capable of high-speed radiographic imaging that can be used to visualize multiphase flows. Details of the hardware will be given and then applied to ...


Approximating A Three-Dimensional Fluidized Bed With Two-Dimensional Simulations, Mirka Deza, Francine Battaglia, Theodore J. Heindel 2017 Virginia Polytechnic Institute and State University

Approximating A Three-Dimensional Fluidized Bed With Two-Dimensional Simulations, Mirka Deza, Francine Battaglia, Theodore J. Heindel

Theodore J. Heindel

Fluidized beds can be used to gasify biomass in the production of producer gas, a flammable gas that can replace natural gas in process heating. Modeling these reactors with computational fluid dynamics (CFD) simulations is advantageous when performing parametric studies for design and scale-up. From a computational resource point of view, two-dimensional simulations are easier to perform than three-dimensional simulations, but they may not capture the proper physics. This paper will compare two- and three-dimensional simulations in a 10.2 cm diameter fluidized bed with side air injection to determine when two-dimensional simulations are adequate to capture the bed hydrodynamics ...


A Validation Study For The Hydrodynamics Of Biomass In A Fluidized Bed, Mirka Deza, Francine Battaglia, Theodore J. Heindel 2017 Virginia Polytechnic Institute and State University

A Validation Study For The Hydrodynamics Of Biomass In A Fluidized Bed, Mirka Deza, Francine Battaglia, Theodore J. Heindel

Theodore J. Heindel

Computational modeling of fluidized beds can be used to predict operation of biomass gasifiers after extensive validation with experimental data. The present work focused on computational simulations of a fluidized bed using a multifluid Eulerian-Eulerian model to represent the gas and solid phases as interpenetrating continua. Hydrodynamic results from the simulations were quantitatively compared with X-ray flow visualization studies of a similar bed. It was found that the Gidaspow model can accurately predict the hydrodynamics of the biomass in a fluidized bed. The coefficient of restitution of biomass was fairly high and did not affect the hydrodynamics of the bed ...


Cavitation From A Butterfly Valve: Comparing 3d Simulations To 3d X-Ray Computed Tomography Flow Visualization, Graham Brett, Marc Riveland, Terrence C. Jensen, Theodore J. Heindel 2017 Fisher Controls International, LLC

Cavitation From A Butterfly Valve: Comparing 3d Simulations To 3d X-Ray Computed Tomography Flow Visualization, Graham Brett, Marc Riveland, Terrence C. Jensen, Theodore J. Heindel

Theodore J. Heindel

Flow control valves may experience localized cavitation when the local static pressure drops to the liquid vapor pressure. Localized damage to the valve and surrounding area can occur when the vapor cavity collapses. Valve designs that reduce cavitation are based on empirical evidence and accumulated experience, but there are still considerable cavitation problems in industry. Valve designers may use computational fluid dynamics (CFD) to simulate cavitation in flow control valves, but model validation is challenging because there are limited data of local cavitation from the valve surface. Typically, the intensity of cavitation in a control valve is inferred from measurements ...


Phenix Upgrade: Novel Stripixel Detector For Heavy Quark Detection And Proton Spin Structure Measurements At Rhic Energies, R. Nouicer, Sergey Belikov, S. Bhagavatula, Paul Constantin, Nathan C. Grau, John C. Hill, John G. Lajoie, Alexandre Lebedev, Craig Ogilvie, Jan Rak, Marzia Rosati, F. K. Wohn, et al. 2017 Brookhaven National Laboratory

Phenix Upgrade: Novel Stripixel Detector For Heavy Quark Detection And Proton Spin Structure Measurements At Rhic Energies, R. Nouicer, Sergey Belikov, S. Bhagavatula, Paul Constantin, Nathan C. Grau, John C. Hill, John G. Lajoie, Alexandre Lebedev, Craig Ogilvie, Jan Rak, Marzia Rosati, F. K. Wohn, Et Al.

Craig Ogilvie

New design of silicon stripixel sensor has been developed at BNL for PHENIX upgrade. The sensor is a single-sided, DC-coupled, two-dimensional position sensitive device with good position resolution. This design is simpler for sensor fabrication and signal processing than the conventional double-sided strip sensor. HPK has produced pre-production stripixel sensors with thickness of 625 μm. The quality assurance tests show that the very low leakage current 0.12 nA per strip allows the use of the SVX4 chip. A long term stability test shows that the leakage current is stable over a long period of time. The study of the ...


Digital Commons powered by bepress