Phylogenetic Networks And Functions That Relate Them, 2020 The University of Akron

#### Phylogenetic Networks And Functions That Relate Them, Drew Scalzo

*Williams Honors College, Honors Research Projects*

Phylogenetic Networks are defined to be simple connected graphs with exactly n labeled nodes of degree one, called leaves, and where all other unlabeled nodes have a degree of at least three. These structures assist us with analyzing ancestral history, and its close relative - phylogenetic trees - garner the same visualization, but without the graph being forced to be connected. In this paper, we examine the various characteristics of Phylogenetic Networks and functions that take these networks as inputs, and convert them to more complex or simpler structures. Furthermore, we look at the nature of functions as they relate to the ...

Symbolic Construction Of Matrix Functions In A Numerical Environment, 2020 Georgia Southern University

#### Symbolic Construction Of Matrix Functions In A Numerical Environment, Evan D. Butterworth

*University Honors Program Theses*

Within the field of Computational Science, the importance of programs and tools involving systems of differential equations cannot be overemphasized. Many industrial sites, such as nuclear power facilities, are unable to safely operate without these systems. This research explores and studies matrix differential equations and their applications to real computing structures. Through the use of software such as MatLab, I have constructed a toolbox, or collection, of programs that will allow any user to easily calculate a variety of matrix functions. The first tool in this collection is a program that computes the matrix exponential, famously studied and presented by ...

General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, 2019 University of New Orleans

#### General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr

*University of New Orleans Theses and Dissertations*

We will create a class of generalized ellipses and explore their ability to define a distance on a space and generate continuous, periodic functions. Connections between these continuous, periodic functions and the generalizations of trigonometric functions known in the literature shall be established along with connections between these generalized ellipses and some spectrahedral projections onto the plane, more specifically the well-known multifocal ellipses. The superellipse, or Lam\'{e} curve, will be a special case of the generalized ellipse. Applications of these generalized ellipses shall be explored with regards to some one-dimensional systems of classical mechanics. We will adopt the Ramberg-Osgood ...

Algorithms To Approximate Solutions Of Poisson's Equation In Three Dimensions, 2019 University of Mary Washington

#### Algorithms To Approximate Solutions Of Poisson's Equation In Three Dimensions, Ray Dambrose

*Rose-Hulman Undergraduate Mathematics Journal*

The focus of this research was to develop numerical algorithms to approximate solutions of Poisson's equation in three dimensional rectangular prism domains. Numerical analysis of partial differential equations is vital to understanding and modeling these complex problems. Poisson's equation can be approximated with a finite difference approximation. A system of equations can be formed that gives solutions at internal points of the domain. A computer program was developed to solve this system with inputs such as boundary conditions and a nonhomogenous source function. Approximate solutions are compared with exact solutions to prove their accuracy. The program is tested ...

Using Canalization For The Control Of Discrete Networks, 2018 University of Kentucky

#### Using Canalization For The Control Of Discrete Networks, David Murrugarra

*Annual Symposium on Biomathematics and Ecology: Education and Research*

No abstract provided.

Radial Basis Function Generated Finite Differences For The Nonlinear Schrodinger Equation, 2018 Air Force Institute of Technology

#### Radial Basis Function Generated Finite Differences For The Nonlinear Schrodinger Equation, Justin Ng

*Theses and Dissertations*

Solutions to the one-dimensional and two-dimensional nonlinear Schrodinger (NLS) equation are obtained numerically using methods based on radial basis functions (RBFs). Periodic boundary conditions are enforced with a non-periodic initial condition over varying domain sizes. The spatial structure of the solutions is represented using RBFs while several explicit and implicit iterative methods for solving ordinary differential equations (ODEs) are used in temporal discretization for the approximate solutions to the NLS equation. Splitting schemes, integration factors and hyperviscosity are used to stabilize the time-stepping schemes and are compared with one another in terms of computational efficiency and accuracy. This thesis shows ...

Positive Definite Functions And Dual Pairs Of Locally Convex Spaces, 2018 Chapman University

#### Positive Definite Functions And Dual Pairs Of Locally Convex Spaces, Daniel Alpay, Saak Gabriyelyan

*Mathematics, Physics, and Computer Science Faculty Articles and Research*

Using pairs of locally convex topological vector spaces in duality and topologies defined by directed families of sets bounded with respect to the duality, we prove general factorization theorems and general dilation theorems for operator-valued positive definite functions.

Distributed Evolution Of Spiking Neuron Models On Apache Mahout For Time Series Analysis, 2017 Cylance, Inc.

#### Distributed Evolution Of Spiking Neuron Models On Apache Mahout For Time Series Analysis, Andrew Palumbo

*Annual Symposium on Biomathematics and Ecology: Education and Research*

No abstract provided.

Conference Program, 2017 University of Dayton

#### Conference Program, University Of Dayton

*Summer Conference on Topology and Its Applications*

Document provides a list of the sessions, speakers, workshops, and committees of the 32nd Summer Conference on Topology and Its Applications.

A Compact Minimal Space Whose Cartesian Square Is Not Minimal, 2017 AGH University of Science and Technology, Krakow

#### A Compact Minimal Space Whose Cartesian Square Is Not Minimal, Jan P. Boronski, Alex Clark, Piotr Oprocha

*Summer Conference on Topology and Its Applications*

A compact metric space X is called *minimal* if it admits a minimal homeomorphism; i.e. a homeomorphism h:X→ X such that the forward orbit {h^{n}(x):n=1, 2, ...} is dense in X, for every x ∈ X. In my talk I shall outline a construction of a family of 1-dimensional minimal spaces from "A compact minimal space Y such that its square YxY is not minimal" whose existence answer the following long standing problem in the negative.

**Problem.** Is minimality preserved under Cartesian product in the class of compact spaces?

Note that for the fixed point property ...

A New Class Of Dendrites Having Unique Second Symmetric Product, 2017 Universidad Autonoma del Estado de Mexico

#### A New Class Of Dendrites Having Unique Second Symmetric Product, David Maya, José G. Anaya, Fernando Orozco Zitli

*Summer Conference on Topology and Its Applications*

The second symmetric product of a continuum X, F_{2}(X), is the hyperspace consisting of all nonempty subsets of X having at most two points. A continuum X has unique hyperspace F_{2}(X) provided that each continuum Y satisfying that F_{2}(X) and F_{2}(Y) are homeomorphic must be homeomorphic to X. In this talk, a new class of dendrites having unique F_{2}(X) will be presented.

Cohen Reals And The Sequential Order Of Groups, 2017 Tennessee Technological University

#### Cohen Reals And The Sequential Order Of Groups, Alexander Shibakov

*Summer Conference on Topology and Its Applications*

We show that adding uncountably many Cohen reals to a model of diamond results in a model with no countable sequential group with an intermediate sequential order. The same model has an uncountable group of sequential order 2. We also discuss related questions.

Sequential Order Of Compact Scattered Spaces, 2017 University of North Carolina at Charlotte

#### Sequential Order Of Compact Scattered Spaces, Alan Dow

*Summer Conference on Topology and Its Applications*

A space is sequential if the closure of set can be obtained by iteratively adding limits of converging sequences. The sequential order of a space is a measure of how many iterations are required. A space is scattered if every non-empty set has a relative isolated point. It is not known if it is consistent that there is a countable (or finite) upper bound on the sequential order of a compact sequential space. We consider the properties of compact scattered spaces with infinite sequential order.

Spaces With No S Or L Subspaces, 2017 University of Wisconsin-Oshkosh

#### Spaces With No S Or L Subspaces, Joan Hart, Kenneth Kunen

*Summer Conference on Topology and Its Applications*

We show it consistent for spaces X and Y to be both HS and HL even though their product X ×Y contains an S-space. Recall that an S-space is a T_{3} space that is HS but not HL.

More generally, consider spaces that contain neither an S-space nor an L-space. We say a space is ESLC iff each of its subspaces is either both HS and HL or neither HS nor HL. The "C" in "ESLC" refers to HC; a space is HC iff each of its subspaces has the ccc (countable chain condition) (iff the space has no ...

Disjoint Infinity Borel Functions, 2017 University of Denver

#### Disjoint Infinity Borel Functions, Daniel Hathaway

*Summer Conference on Topology and Its Applications*

Consider the statement that every uncountable set of reals can be surjected onto R by a Borel function. This is implied by the statement that every uncountable set of reals has a perfect subset. It is also implied by a new statement D which we will discuss: for each real a there is a Borel function f_{a} : RtoR and for each function g : RtoR there is a countable set G(g) of reals such that the following is true: for each a in R and for each function g : R to R, if f_{a} is disjoint from g ...

On The Chogoshvili Homology Theory Of Continuous Maps Of Compact Spaces, 2017 Batumi Shota Rustaveli State University

#### On The Chogoshvili Homology Theory Of Continuous Maps Of Compact Spaces, Anzor Beridze, Vladimer Baladze

*Summer Conference on Topology and Its Applications*

In this paper an exact homology functor from the category **Mor**_{C} of continuous maps of compact Hausdorff spaces to the category **LES** of long exact sequences of abelian groups is defined (cf. [2], [3], [5]). This functor is an extension of the Hu homology theory, which is uniquely defined on the category of continuous maps of finite CW complexes and is constructed without the relative homology groups [9]. To define the given homology functor we use the Chogoshvili construction of projective homology theory [7], [8]. For each continuous map f:X → Y of compact spaces, using the notion of ...

Hausdorff Dimension Of Kuperberg Minimal Sets, 2017 University of Illinois at Chicago

#### Hausdorff Dimension Of Kuperberg Minimal Sets, Daniel Ingbretson

*Summer Conference on Topology and Its Applications*

The Seifert conjecture was answered negatively in 1994 by Kuperberg who constructed a smooth aperiodic flow on a three-manifold. This construction was later found to contain a minimal set with a complicated topology. The minimal set is embedded as a lamination by surfaces with a Cantor transversal of Lebesgue measure zero. In this talk we will discuss the pseudogroup dynamics on the transversal, the induced symbolic dynamics, and the Hausdorff dimension of the Cantor set.

On The Axiomatic Systems Of Steenrod Homology Theory Of Compact Spaces, 2017 Georgian Technical University

#### On The Axiomatic Systems Of Steenrod Homology Theory Of Compact Spaces, Leonard Mdzinarishvili, Anzor Beridze

*Summer Conference on Topology and Its Applications*

The Steenrod homology theory on the category of compact metric pairs was axiomatically described by J.Milnor. In Milnor, the uniqueness theorem is proved using the Eilenberg-Steenrod axioms and as well as relative homeomorphism and clusres axioms. J. Milnor constructed the homology theory on the category Top^{2}_{C} of compact Hausdorff pairs and proved that on the given category it satisfies nine axioms - the Eilenberg-Steenrod, relative homeomorphis and cluster axioms (see theorem 5 in Milnor). Besides, he proved that constructed homology theory satisfies partial continuity property on the subcategory Top^{2}_{CM} (see theorem 4 in Milnor) and the ...

Revelation Of Nano Topology In Cech Rough Closure Spaces, 2017 Madurai Kamaraj University

#### Revelation Of Nano Topology In Cech Rough Closure Spaces, V. Antonysamy, Llellis Thivagar, Arockia Dasan

*Summer Conference on Topology and Its Applications*

The concept of Cech closure space was initiated and developed by E. Cech in 1966. Henceforth many more research scholars set their minds in this theory and developed it to a new height. Pawlak.Z derived and gave shape to Rough set theory in terms of approximation using equivalence relation known as indiscernibility relation. Further Lellis Thivagar enhanced rough set theory into a topology, called Nano Topology, which has at most five elements in it and he also extended this into multi granular nano topology. The purpose of this paper is to derive Nano topology in terms of Cech rough ...

Totally Geodesic Surfaces In Arithmetic Hyperbolic 3-Manifolds, 2017 Oberlin College

#### Totally Geodesic Surfaces In Arithmetic Hyperbolic 3-Manifolds, Benjamin Linowitz, Jeffrey S. Meyer

*Summer Conference on Topology and Its Applications*

In this talk we will discuss some recent work on the problem of determining the extent to which the geometry of an arithmetic hyperbolic 3-manifold M is determined by the geometric genus spectrum of M (i.e., the set of isometry classes of finite area, properly immersed, totally geodesic surfaces of M, considered up to free homotopy). In particular, we will give bounds on the totally geodesic 2-systole, construct infinitely many incommensurable manifolds with the same initial geometric genus spectrum and analyze the growth of the genera of minimal surfaces across commensurability classes. These results have applications to the study ...