Open Access. Powered by Scholars. Published by Universities.®

Partial Differential Equations Commons

Open Access. Powered by Scholars. Published by Universities.®

533 Full-Text Articles 449 Authors 86,841 Downloads 62 Institutions

All Articles in Partial Differential Equations

Faceted Search

533 full-text articles. Page 1 of 19.

Spectra Of Quantum Trees And Orthogonal Polynomials, Zhaoxia Wang 2018 Louisiana State University and Agricultural and Mechanical College

Spectra Of Quantum Trees And Orthogonal Polynomials, Zhaoxia Wang

LSU Doctoral Dissertations

We investigate the spectrum of regular quantum-graph trees, where the edges are endowed with a Schr\"odinger operator with self-adjoint Robin vertex conditions. It is known that, for large eigenvalues, the Robin spectrum approaches the Neumann spectrum. In this research, we compute the lower Robin spectrum. The spectrum can be obtained from the roots of a sequence of orthogonal polynomials involving two variables. As the length of the quantum tree increases, the spectrum approaches a band-gap structure. We find that the lowest band tends to minus infinity as the Robin parameter increases, whereas the rest of the bands remain positive ...


Transport Phenomena In Field Effect Transistors, Ryan M. Evans, Arvind Balijepalli, Anthony Kearsley 2018 National Institute of Standards and Technology

Transport Phenomena In Field Effect Transistors, Ryan M. Evans, Arvind Balijepalli, Anthony Kearsley

Biology and Medicine Through Mathematics Conference

No abstract provided.


Spatial Spread Of Defective Interfering Particles And Its Role In Suppressing Viral Load, Qasim Ali QA, Ruian Ke 2018 North Carolina State University at Raleigh

Spatial Spread Of Defective Interfering Particles And Its Role In Suppressing Viral Load, Qasim Ali Qa, Ruian Ke

Biology and Medicine Through Mathematics Conference

No abstract provided.


Properties And Convergence Of State-Based Laplacians, Kelsey Wells 2018 University of Nebraska - Lincoln

Properties And Convergence Of State-Based Laplacians, Kelsey Wells

Dissertations, Theses, and Student Research Papers in Mathematics

The classical Laplace operator is a vital tool in modeling many physical behaviors, such as elasticity, diffusion and fluid flow. Incorporated in the Laplace operator is the requirement of twice differentiability, which implies continuity that many physical processes lack. In this thesis we introduce a new nonlocal Laplace-type operator, that is capable of dealing with strong discontinuities. Motivated by the state-based peridynamic framework, this new nonlocal Laplacian exhibits double nonlocality through the use of iterated integral operators. The operator introduces additional degrees of flexibility that can allow better representation of physical phenomena at different scales and in materials with different ...


The Advection-Diffusion Equation And The Enhanced Dissipation Effect For Flows Generated By Hamiltonians, Michael Kumaresan 2018 The Graduate Center, City University of New York

The Advection-Diffusion Equation And The Enhanced Dissipation Effect For Flows Generated By Hamiltonians, Michael Kumaresan

All Dissertations, Theses, and Capstone Projects

We study the Cauchy problem for the advection-diffusion equation when the diffusive parameter is vanishingly small. We consider two cases - when the underlying flow is a shear flow, and when the underlying flow is generated by a Hamiltonian. For the former, we examine the problem on a bounded domain in two spatial variables with Dirichlet boundary conditions. After quantizing the system via the Fourier transform in the first spatial variable, we establish the enhanced-dissipation effect for each mode. For the latter, we allow for non-degenerate critical points and represent the orbits by points on a Reeb graph, with vertices representing ...


Automatic Construction Of Scalable Time-Stepping Methods For Stiff Pdes, Vivian Montiforte 2018 The University of Southern Mississippi

Automatic Construction Of Scalable Time-Stepping Methods For Stiff Pdes, Vivian Montiforte

Master's Theses

Krylov Subspace Spectral (KSS) Methods have been demonstrated to be highly scalable time-stepping methods for stiff nonlinear PDEs. However, ensuring this scalability requires analytic computation of frequency-dependent quadrature nodes from the coefficients of the spatial differential operator. This thesis describes how this process can be automated for various classes of differential operators to facilitate public-domain software implementation.


Physical Applications Of The Geometric Minimum Action Method, George L. Poppe Jr. 2018 The Graduate Center, City University of New York

Physical Applications Of The Geometric Minimum Action Method, George L. Poppe Jr.

All Dissertations, Theses, and Capstone Projects

This thesis extends the landscape of rare events problems solved on stochastic systems by means of the \textit{geometric minimum action method} (gMAM). These include partial differential equations (PDEs) such as the real Ginzburg-Landau equation (RGLE), the linear Schroedinger equation, along with various forms of the nonlinear Schroedinger equation (NLSE) including an application towards an ultra-short pulse mode-locked laser system (MLL).

Additionally we develop analytical tools that can be used alongside numerics to validate those solutions. This includes the use of instanton methods in deriving state transitions for the linear Schroedinger equation and the cubic diffusive NLSE.

These analytical solutions ...


Harmonic Functions And Harmonic Measure, David McDonald 2018 University of Connecticut

Harmonic Functions And Harmonic Measure, David Mcdonald

Honors Scholar Theses

The purpose of this thesis is to give a brief introduction to the field of harmonic measure. In order to do this we first introduce a few important properties of harmonic functions and show how to find a Green’s function for a given domain. Following this we calculate the harmonic measure for some easy cases and end by examining the connection between harmonic measure and Brownian motion.


Homogenization In Perforated Domains And With Soft Inclusions, Brandon C. Russell 2018 University of Kentucky

Homogenization In Perforated Domains And With Soft Inclusions, Brandon C. Russell

Brandon Russell

In this dissertation, we first provide a short introduction to qualitative homogenization of elliptic equations and systems. We collect relevant and known results regarding elliptic equations and systems with rapidly oscillating, periodic coefficients, which is the classical setting in homogenization of elliptic equations and systems. We extend several classical results to the so-called case of perforated domains and consider materials reinforced with soft inclusions. We establish quantitative H^1-convergence rates in both settings, and as a result deduce large-scale Lipschitz estimates and Liouville-type estimates for solutions to elliptic systems with rapidly oscillating, periodic, bounded, and measurable coefficients. Finally, we connect ...


The Pope's Rhinoceros And Quantum Mechanics, Michael Gulas 2018 Bowling Green State University

The Pope's Rhinoceros And Quantum Mechanics, Michael Gulas

Honors Projects

In this project, I unravel various mathematical milestones and relate them to the human experience. I show and explain the solution to the Tautochrone, a popular variation on the Brachistochrone, which details a major battle between Leibniz and Newton for the title of inventor of Calculus. One way to solve the Tautochrone is using Laplace Transforms; in this project I expound on common functions that get transformed and how those can be used to solve the Tautochrone. I then connect the solution of the Tautochrone to clock making. From this understanding of clocks, I examine mankind’s understanding of time ...


Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson 2018 Southern Methodist University

Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson

Mathematics Theses and Dissertations

Irradiation of semiconductor surfaces often leads to the spontaneous formation of rippled structures at certain irradiation angles. However, at high enough energies, these structures are observed to vanish for all angles, despite the absence of any identified, universally-stabilizing physical mechanisms in operation. Here, we examine the effect on pattern formation of radiation-induced swelling, which has been excluded from prior treatments of stress in irradiated films. After developing a suitable continuum model, we perform a linear stability analysis to determine its effect on stability. Under appropriate simplifying assumptions, we find swelling indeed to be stabilizing at wavenumbers typical of experimental observations ...


Numerical Simulation Of Energy Localization In Dynamic Materials, Arkadi Berezovski, Mihhail Berezovski 2018 Tallinn University of Technology

Numerical Simulation Of Energy Localization In Dynamic Materials, Arkadi Berezovski, Mihhail Berezovski

Publications

Dynamic materials are artificially constructed in such a way that they may vary their characteristic properties in space or in time, or both, by an appropriate arrangement or control. These controlled changes in time can be provided by the application of an external (non-mechanical) field, or through a phase transition. In principle, all materials change their properties with time, but very slowly and smoothly. Changes in properties of dynamic materials should be realized in a short or quasi-nil time lapse and over a sufficiently large material region. Wave propagation is a characteristic feature for dynamic materials because it is also ...


Screening Algorithm Based On The Color Halftone Fluorescent Printing And Its Application In Packaging Design, Hu Yaojian, Liu Juan, Wang Ruojing, Zhong Yunfei 2018 Hunan University of Technology

Screening Algorithm Based On The Color Halftone Fluorescent Printing And Its Application In Packaging Design, Hu Yaojian, Liu Juan, Wang Ruojing, Zhong Yunfei

Journal of Applied Packaging Research

Abstract:This paper analyzed the characteristics of colorless fluorescent ink and the existing color separation theory, so that colored additive method should be used in printing color pattern with colorless fluorescent ink as well as three-color screening separation type (red, green and blue). Considering the exhibition of the tone, this paper selected dot parallel screening method. At the same time, through comparing the properties of different dots, this paper adopted a special method of AM screening, using regular triangle as the basic dot model to a threshold matrix of AM screening. Finally, designing a screening algorithm which best suit the ...


A Mathematical Model Of A Corrosion System Containing Inhibitors, Abigael Frey 2018 The University of Akron

A Mathematical Model Of A Corrosion System Containing Inhibitors, Abigael Frey

Honors Research Projects

A two dimensional model is developed to describe how organic and inorganic inhibitors slows down the corrosion damage of a coated metal plate that contains a defect. The model contains a metal covered on one side by a coating that contains organic and inorganic inhibitors, electrolytes that are on the outside of the coating, and a small defect in the coating. The defect is an area where the coating is more porous and allows the electrolytes to leak in faster. In this model the organic inhibitor is presumed to be dissolved into the coating and the inorganic inhibitor is released ...


Material Thermal Property Estimation Of Fibrous Insulation: Heat Transfer Modeling And The Continuous Genetic Algorithm, Elora Frye 2018 Virginia Commonwealth University

Material Thermal Property Estimation Of Fibrous Insulation: Heat Transfer Modeling And The Continuous Genetic Algorithm, Elora Frye

Theses and Dissertations

Material thermal properties are highly sought after to better understand the performance of a material under particular conditions. As new materials are created, their physical properties will determine their performance for various applications. These properties have been estimated using many techniques including experimental testing, numerical modeling, and a combination of both. Existing methods can be time consuming, thus, a time-efficient and precise method to estimate these thermal properties was desired. A one-dimensional finite difference numerical model was developed to replicate the heat transfer through an experimental apparatus. A combination of this numerical model and the Continuous Genetic Algorithm optimization technique ...


Homogenization In Perforated Domains And With Soft Inclusions, Brandon C. Russell 2018 University of Kentucky

Homogenization In Perforated Domains And With Soft Inclusions, Brandon C. Russell

Theses and Dissertations--Mathematics

In this dissertation, we first provide a short introduction to qualitative homogenization of elliptic equations and systems. We collect relevant and known results regarding elliptic equations and systems with rapidly oscillating, periodic coefficients, which is the classical setting in homogenization of elliptic equations and systems. We extend several classical results to the so called case of perforated domains and consider materials reinforced with soft inclusions. We establish quantitative H1-convergence rates in both settings, and as a result deduce large-scale Lipschitz estimates and Liouville-type estimates for solutions to elliptic systems with rapidly oscillating periodic bounded and measurable coefficients. Finally ...


Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick 2018 Wilfrid Laurier University

Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick

Theses and Dissertations (Comprehensive)

Materials at the nanoscale have different chemical, structural, and optoelectrical properties compared to their bulk counterparts. As a result, such materials, called nanomaterials, exhibit observable differences in certain physical phenomena. One such resulting phenomenon called the piezoelectric effect has played a crucial role in miniature self-powering electronic devices called nanogenerators which are fabricated by using nanostructures, such as nanowires, nanorods, and nanofilms. These devices are capable of harvesting electrical energy by inducing mechanical strain on the individual nanostructures. Electrical energy created in this manner does not have environmental limitations. In this thesis, important coupled effects, such as the nonlinear piezoelectric ...


Energy Calculations And Wave Equations, Ellen R. Hunter 2018 Missouri State University

Energy Calculations And Wave Equations, Ellen R. Hunter

MSU Graduate Theses

The focus of this thesis is to show how methods of Fourier analysis, in particular Parseval’s equality, can be used to provide explicit energy calculations for solutions of wave equations in one dimension. These calculations are discussed for simple examples and then extended to fit the general wave equation with Robin boundary conditions. Ideas from Sobolev space theory are used to provide justification of the method.


Reduced Models Of Point Vortex Systems In Quasigeostrophic Fluid Dynamics, Jonathan Maack 2018 University of Massachusetts Amherst

Reduced Models Of Point Vortex Systems In Quasigeostrophic Fluid Dynamics, Jonathan Maack

Doctoral Dissertations

We develop a nonequilibrium statistical mechanical description of the evolution of point vortex systems governed by either the Euler, single-layer quasigeostrophic or two-layer quasigeostrophic equations. Our approach is based on a recently proposed optimal closure procedure for deriving reduced models of Hamiltonian systems. In this theory the statistical evolution is kept within a parametric family of distributions based on the resolved variables chosen to describe the macrostate of the system. The approximate evolution is matched as closely as possible to the true evolution by minimizing the mean-squared residual in the Liouville equation, a metric which quantifies the information loss rate ...


Call For Abstracts - Resrb 2018, June 18-20, Brussels, Belgium, Wojciech M. Budzianowski 2017 Wojciech Budzianowski Consulting Services

Call For Abstracts - Resrb 2018, June 18-20, Brussels, Belgium, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Digital Commons powered by bepress