Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

489 Full-Text Articles 1,146 Authors 88,868 Downloads 90 Institutions

All Articles in Nanotechnology

Faceted Search

489 full-text articles. Page 19 of 24.

Multi-Scale Nanoindentation For Characterization Of Oil Shales, Zachary N. Miller 2016 University of Mississippi

Multi-Scale Nanoindentation For Characterization Of Oil Shales, Zachary N. Miller

Electronic Theses and Dissertations

Studies of the effects of polishing techniques, scale of nanoindentation, and petrophysical properties were conducted on both Woodford and Tuscaloosa Marine Shale. Polishing procedures include both an in-house developed, mechanical sample preparation protocol as well as ion beam milling. The elastic modulus and hardness of each mechanically polished sample was found to have larger value than those that were ion-milled. Additionally, at low loads, the samples resulted in having high standard deviation. This high deviation was found to be significantly reduced by testing at higher loads. The variations in results between mechanically polished and ion beam milled samples is believed …


Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya 2015 The University of Texas MD Anderson Cancer Center

Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya

Nicholas Whiting

Many existing and emerging techniques of interrogating metabolism in brain cancer are at an early stage of development. A few clinical trials that employ these techniques are in progress in patients with brain cancer to establish the clinical efficacy of these techniques. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy.


Biodegradable Hybrid Nanogels For Combination Chemotherapy, Swapnil Desale 2015 University of Nebraska Medical Center

Biodegradable Hybrid Nanogels For Combination Chemotherapy, Swapnil Desale

Theses & Dissertations

Combination chemotherapy is commonly used to treat cancer, because such a therapy regimens usually involve sequential administration of multiple drugs and allow targeting different cell signaling pathway. The co-delivery of drug combination at a controlled ratio via the same vehicle is offering the advantages such as spatial-temporal synchronization of drug exposure, synergistic therapeutic effects and suppression of drug resistance. Undoubtedly, there are several molecular and pharmacological factors that determine the effectiveness of drug combinations. A rationally designed drug combination is required since certain drug ratios and the definitive exposure to the targets of interest can only be synergistic while others …


Antiviral Peptide Nanocomplexes As Potential Therapeutics For The Treatment Of Infectious Diseases, Jinjin Zhang 2015 University of Nebraska Medical Center

Antiviral Peptide Nanocomplexes As Potential Therapeutics For The Treatment Of Infectious Diseases, Jinjin Zhang

Theses & Dissertations

Hepatitis C Virus (HCV) is recognized as a major burden in global public health, which can be further exacerbated by several cofactors such as human immunodeficiency virus (HIV). Currently, there is no vaccine for HCV. The emergence of potent and highly specific direct-acting antivirals (DAA) has marked a new era in HCV therapy, however, the remaining issues like affordability, genotype dependency, and potential resistance still necessitate the development of additional therapeutic approaches to be used instead or in combination with DAA.

Recently, the antiviral peptide C5A (in our studies designated as p1) and its cationic derivative p41 have been identified …


Pamam Dendrimers As Promising Nanocarriers For Rnai Therapeutics, Prashant Kesharwani, Sanjeev Banerjee, Umesh Gupta, Mohd Cairul Iqbal Mohd Amin, Subhash Padhye, Fazlul H. Sarkar, Arun K. Iyer 2015 Wayne State University

Pamam Dendrimers As Promising Nanocarriers For Rnai Therapeutics, Prashant Kesharwani, Sanjeev Banerjee, Umesh Gupta, Mohd Cairul Iqbal Mohd Amin, Subhash Padhye, Fazlul H. Sarkar, Arun K. Iyer

Pharmaceutical Sciences Faculty Publications

Therapeutics based on RNA interference mechanisms are highly promising for the management of several diseases including multi-drug resistant cancers. However, effective delivery of siRNAs and oligonucleotides still remains challenging. In this regard, hyper-branched, PAMAM dendrimers having unique three-dimensional architecture and nanoscale size, with cationic surface charge can potentially serve as siRNA condensing agents as well as robust nano-vectors for targeted delivery. In addition, their surface functionality permits conjugation of drugs and genes or development of hybrid systems for combination therapy. Thus far, in vitro cellular testing of dendrimer-mediated siRNA delivery has revealed great potential, with reports on their in vivo …


Synthesis And Functional Evaluation Of Peptide Modified Poly (Lactic-Co-Glycolic Acid) Nanoparticles To Inhibit Porphyromonas Gingivalis Biofilm Formation., Paridhi Kalia 2015 University of Louisville

Synthesis And Functional Evaluation Of Peptide Modified Poly (Lactic-Co-Glycolic Acid) Nanoparticles To Inhibit Porphyromonas Gingivalis Biofilm Formation., Paridhi Kalia

Electronic Theses and Dissertations

Periodontal disease is an oral inflammatory disorder that afflicts roughly 46% of the adults in the U.S. Currently, treatment of periodontal disease involves the removal of plaque from the gingival pocket (with possible antibiotic treatment) and if necessary, gingival surgery. To our knowledge, no therapeutic approach exists that promotes host-biofilm homeostasis by limiting pathogen recolonization of the oral cavity after prophylaxis or treatment. The interaction of the pathogen Porphyromonas gingivalis with commensal streptococci is critical for initiation of periodontitis and represents a target for limiting P. gingivalis colonization of the oral cavity. Previous studies showed that a synthetic peptide …


When 1 + 1 > 2: Nanostructured Composites For Hard Tissue Engineering Applications, Vuk Uskoković 2015 Chapman University

When 1 + 1 > 2: Nanostructured Composites For Hard Tissue Engineering Applications, Vuk Uskoković

Pharmacy Faculty Articles and Research

Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. …


Label-Free Surface-Enhanced Raman Spectroscopy-Linked Immunosensor Assay (Slisa) For Environmental Surveillance, vinay bhardwaj 2015 Florida International University

Label-Free Surface-Enhanced Raman Spectroscopy-Linked Immunosensor Assay (Slisa) For Environmental Surveillance, Vinay Bhardwaj

FIU Electronic Theses and Dissertations

The contamination of the environment, accidental or intentional, in particular with chemical toxins such as industrial chemicals and chemical warfare agents has increased public fear. There is a critical requirement for the continuous detection of toxins present at very low levels in the environment. Indeed, some ultra-sensitive analytical techniques already exist, for example chromatography and mass spectroscopy, which are approved by the US Environmental Protection Agency for the detection of toxins. However, these techniques are limited to the detection of known toxins. Cellular expression of genomic and proteomic biomarkers in response to toxins allows monitoring of known as well as …


Lipopolysaccharide Induced Map Kinase Activation In Raw 264.7 Cells Attenuated By Cerium Oxide Nanoparticles, Vellaisamy Selvaraj, Niraj Nepa, Steven Rogers, Nandini D.P.K. Manne, Ravi K. Arvapalli, Kevin M. Rice, Shinichi Asano, Erin Fankenhanel, J. Y. Ma, Tolou Shokuhfar, Mani Maheshwari, Eric R. Blough 2015 Marshall University

Lipopolysaccharide Induced Map Kinase Activation In Raw 264.7 Cells Attenuated By Cerium Oxide Nanoparticles, Vellaisamy Selvaraj, Niraj Nepa, Steven Rogers, Nandini D.P.K. Manne, Ravi K. Arvapalli, Kevin M. Rice, Shinichi Asano, Erin Fankenhanel, J. Y. Ma, Tolou Shokuhfar, Mani Maheshwari, Eric R. Blough

Pharmaceutical Science and Research

High mortality rates are associated with the life threatening disease of sepsis. Improvements in septic patient survivability have failed to materialize with currently available treatments. This article represents data regarding a study published in biomaterials (Vellaisamy et al., Biomaterials, 2015, in press). with the purpose of evaluating whether severe sepsis mortality and associated hepatic dysfunction induced by lipopolysaccharide (LPS) can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the method and processing of raw data related to our study publish in Biomaterials and Data in Brief (Vellaisamy et al., …


Targeted Magnetite Tissue Delivery For Antiretroviral Pharmacokinetics, Tianyuzi Li 2015 University of Nebraska Medical Center

Targeted Magnetite Tissue Delivery For Antiretroviral Pharmacokinetics, Tianyuzi Li

Theses & Dissertations

Pharmacokinetics and pharmacodynamics studies are required for bench to bedside translation of any new drug, formulation or device. Multifunctional magnetite nanocarriers enable magnetic resonance imaging tracking of nanomaterial encased antiretroviral drugs serving to improve the effectiveness of formulation developments. Targeting ligands used to deliver nanoparticles to HIV harboring cells can be tested using multifunctional magnetite nanocarriers. To this end, two types of magnetite nanocarriers were developed. These included small magnetite antiretroviral therapy particles. The second were ALN-PEG coated magnetite particles for testing macrophages targeting ligands. Overall, these works should serve to speed the development of long acting nanoformulated ART to …


Polymeric Nanocarriers For Treatment Of Melanoma And Genetically Modified Mesenchymal Stem Cells To Improve Outcome Of Islet Transplantation, Vaibhav Mundra 2015 University of Nebraska Medical Center

Polymeric Nanocarriers For Treatment Of Melanoma And Genetically Modified Mesenchymal Stem Cells To Improve Outcome Of Islet Transplantation, Vaibhav Mundra

Theses & Dissertations

Melanoma is a lethal malignancy with limited treatment options for advanced metastatic stages. New targeted therapeutic options with discovery of BRAF and MEK inhibitors have shown significant survival benefit. Despite the recent progress, inefficient tumor accumulation and dose limiting systemic toxicity remains pressing challenges for treating metastatic melanoma and there is a need for drug delivery approach to improve therapeutic index of chemotherapeutics. Nanoparticle based drug delivery represents promising approach to enhance efficacy and reduce the dose limiting systemic toxicity. Nanoparticles can be formulated either by physical encapsulation of drugs or by covalent conjugation of drugs to the polymeric backbone. …


A Sensorless Haptic Interface For Robotic Minimally Invasive Surgery, Baoliang Zhao 2015 university of Nebraska Lincoln

A Sensorless Haptic Interface For Robotic Minimally Invasive Surgery, Baoliang Zhao

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Robotic minimally invasive surgery (R-MIS) has gained in popularity due to its advantages of improving the accuracy and dexterity of surgical interventions while minimizing trauma to the patient. However, because of the loss of direct contact with the surgical site, the surgeon cannot perceive tactile information, which may adversely affect surgical efficiency and/or efficacy. The lack of haptic feedback is regarded as a limiting factor in existing R-MIS technology.

To solve this problem, researchers have incorporated force sensors on the surgical tools to measure the tool-tissue interaction forces, and reproduce these forces at the surgeon console. However, the employment of …


Enzyme Catalyzed Alginate Nanogels For Drug Delivery, Danna Nichole Sharp 2015 University of Tennessee - Knoxville

Enzyme Catalyzed Alginate Nanogels For Drug Delivery, Danna Nichole Sharp

Masters Theses

Developing nanoscale carriers for the delivery of therapeutics is an important topic of investigation in current biomedical research. As opposed to traditional drug delivery systems, nanoscale systems offer enhanced tissue and cell permeation in addition to reducing drug elimination from the body. Biological based therapeutics such as DNA and proteins are now widely employed in medical applications and research has focused on using nanoscale drug delivery systems to administer these more effectively. Current synthesis methods of nanoscale biotherapeutic carriers face significant challenges. Among these are creating carriers with: sizes between 10-200 nm, low polydispersity, and non-cytotoxic materials. In this thesis, …


15 Years On Sirna Delivery: Beyond The State-Of-The-Art On Inorganic Nanoparticles For Rnai Therapeutics, Joao Conde, Furong Tian, Alfredo Ambrosone, Yulán Hernandez, Mark McCully, Catherine C. .Berry, Pedro Baptista, Claudia Tortiglione, Jesus M. de la Fuented 2015 Universidad de Zaragoza, Spain

15 Years On Sirna Delivery: Beyond The State-Of-The-Art On Inorganic Nanoparticles For Rnai Therapeutics, Joao Conde, Furong Tian, Alfredo Ambrosone, Yulán Hernandez, Mark Mccully, Catherine C. .Berry, Pedro Baptista, Claudia Tortiglione, Jesus M. De La Fuented

Articles

RNAi has always captivated scientists due to its tremendous power to modulate the phenotype of living organisms. This natural and powerful biological mechanism can now be harnessed to downregulate specific gene expression in diseased cells, opening up endless opportunities. Since most of the conventional siRNA delivery methods are limited by a narrow therapeutic index and significant side and off-target effects, we are now in the dawn of a new age in gene therapy driven by nanotechnology vehicles for RNAi therapeutics. Here, we outlook the “do's and dont's” of the inorganic RNAi nanomaterials developed in the last 15 years and the …


Multifunctional Nanoparticles For Theranostic Applications, Supriya Srinivasan 2015 Florida International University

Multifunctional Nanoparticles For Theranostic Applications, Supriya Srinivasan

FIU Electronic Theses and Dissertations

Multifunctional agents for the management of highly heterogeneous diseases, like cancer, are gaining increased interest with the intent of improving the diagnostics and therapy of cancer patients. These agents are also important because more than one treatment modality is typically used for cancer therapy in the clinic. Further, nanotechnology offers a platform where more than one agent can be combined to help provide improved cancer diagnosis and therapy. Near-infrared light-activatable phototherapeutic agents have great potential in vivo. Body tissues have minimum absorption in the near- infrared range. They also have been shown to enhance the cytotoxic effect of chemotherapeutic …


Construction And Expression Identification Of Human Secreted Apoptosis-Related Protein 1 Gene Yeast Two-Hybrid Bait Vector, Wei Zhang, Guangzhao He, Bing Ma 2015 Marshall University

Construction And Expression Identification Of Human Secreted Apoptosis-Related Protein 1 Gene Yeast Two-Hybrid Bait Vector, Wei Zhang, Guangzhao He, Bing Ma

Bing Ma

Objective: To construct human secreted apoptosis-related protein 1 (SARP1) gene yeast two-hybrid bait vector so as to study the biological functions of the SARP1 gene in the scar tissue. Methods: The target gene from SARP1 gene full-length DNA segment was amplified by PCR, the upstream and downstream primers of the SARP1 gene with restriction enzymes Nde I and Sal I were designed. pGBKT7-SARP1 recombination plasmid was constructed by ligating the vector and the PCR production and identified by PCR and sequencing. Furthermore, pGBKT7-SARP1 was transformed into competent AH109 which contained kanamycin for selecting positive clones and screened the positive clony …


Bioresponsive Antisense Dna Gold Nanobeacons As A Hybrid In Vivo Theranostics Platform For The Inhibition Of Cancer Cells And Metastasis, Chenchen Bao, Joao Conde, James Curtin, Daxiang Cui, Furong Tian, Natalie Artzi 2015 dInstitute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Research Institute of Translation Medicine, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai, People’s Republic of China

Bioresponsive Antisense Dna Gold Nanobeacons As A Hybrid In Vivo Theranostics Platform For The Inhibition Of Cancer Cells And Metastasis, Chenchen Bao, Joao Conde, James Curtin, Daxiang Cui, Furong Tian, Natalie Artzi

Articles

Gold nanobeacons can be used as a powerful tool for cancer theranostics. Here, we proposed a nanomaterial platform based on gold nanobeacons to detect, target and inhibit the expression of a mutant Kras gene in an in vivo murine gastric cancer model. The conjugation of fluorescently-labeled antisense DNA hairpin oligonucleotides to the surface of gold nanoparticles enables using their localized surface plasmon resonance properties to directly track the delivery to the primary gastric tumor and to lung metastatic sites. The fluorescently labeled nanobeacons reports on the interaction with the target as the fluorescent Cy3 signal is quenched by the gold …


New Approach To Develop Ultra-High Inhibitory Drug Using The Power Function Of The Stoichiometry Of The Targeted Nanomachine Or Biocomplex, Dan Shu, Fengmei Pi, Chi Wang, Peng Zhang, Peixuan Guo 2015 University of Kentucky

New Approach To Develop Ultra-High Inhibitory Drug Using The Power Function Of The Stoichiometry Of The Targeted Nanomachine Or Biocomplex, Dan Shu, Fengmei Pi, Chi Wang, Peng Zhang, Peixuan Guo

Pharmaceutical Sciences Faculty Publications

AIMS: To find methods for potent drug development by targeting to biocomplex with high copy number.

METHODS: Phi29 DNA packaging motor components with different stoichiometries were used as model to assay virion assembly with Yang Hui's Triangle [Formula: see text], where Z = stoichiometry, M = drugged subunits per biocomplex, p and q are the fraction of drugged and undrugged subunits in the population.

RESULTS: Inhibition efficiency follows a power function. When number of drugged subunits to block the function of the complex K = 1, the uninhibited biocomplex equals q(z), demonstrating the multiplicative effect of stoichiometry on inhibition with …


Fabrication Of Nanofiber Scaffolds With Gradations In Fiber Organization And Their Potential Applications, Jingwei Xie, Bing Ma, Praveesuda Michael, Franklin Shuler 2015 University of Nebraska Medical Center

Fabrication Of Nanofiber Scaffolds With Gradations In Fiber Organization And Their Potential Applications, Jingwei Xie, Bing Ma, Praveesuda Michael, Franklin Shuler

Praveesuda Lorwattanapongsa Michael

A new and simple method for fabrication of nanofiber scaffolds with gradations in fiber organization is reported. The nanofiber organization, achieved by deposition of random fibers on the uniaxially-aligned nanofiber mat in a gradient manner, directed morphological changes of applied adipose-derived stem cells. These morphological changes and resultant biochemical changes can help mimic the structural orientation of complex biomechanical structures like the collagen fiber structure at the tendon-to-bone insertion site. In addition, chemical gradients can be established through nanoencapsulation in this novel scaffold allowing for enhanced biomedical applications.


Fabrication Of Nanofiber Scaffolds With Gradations In Fiber Organization And Their Potential Applications, Jingwei Xie, Bing Ma, Praveesuda Michael, Franklin Shuler 2015 University of Nebraska Medical Center

Fabrication Of Nanofiber Scaffolds With Gradations In Fiber Organization And Their Potential Applications, Jingwei Xie, Bing Ma, Praveesuda Michael, Franklin Shuler

Jingwei Xie

A new and simple method for fabrication of nanofiber scaffolds with gradations in fiber organization is reported. The nanofiber organization, achieved by deposition of random fibers on the uniaxially-aligned nanofiber mat in a gradient manner, directed morphological changes of applied adipose-derived stem cells. These morphological changes and resultant biochemical changes can help mimic the structural orientation of complex biomechanical structures like the collagen fiber structure at the tendon-to-bone insertion site. In addition, chemical gradients can be established through nanoencapsulation in this novel scaffold allowing for enhanced biomedical applications.


Digital Commons powered by bepress