Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

809 Full-Text Articles 1,745 Authors 101,587 Downloads 93 Institutions

All Articles in Molecular and Cellular Neuroscience

Faceted Search

809 full-text articles. Page 4 of 33.

Distributions Of Hypothalamic Neuron Populations Co-Expressing Tyrosine Hydroxylase And The Vesicular Gaba Transporter In The Mouse., Kenichiro Negishi, Mikayla A. Payant, Kayla S. Schumacker, Gabor Wittman, Rebecca M. Butler, Ronald M. Lechan, Harry W. M. Steinbusch m, Arshad M. Khan, Melissa J. Chee 2019 Carleton University

Distributions Of Hypothalamic Neuron Populations Co-Expressing Tyrosine Hydroxylase And The Vesicular Gaba Transporter In The Mouse., Kenichiro Negishi, Mikayla A. Payant, Kayla S. Schumacker, Gabor Wittman, Rebecca M. Butler, Ronald M. Lechan, Harry W. M. Steinbusch M, Arshad M. Khan, Melissa J. Chee

Arshad M. Khan, Ph.D.

No abstract provided.


Assessing The Role Of Drosophila Melanogaster Neuroligin 3 On Social Spacing And Climbing Behaviour, J. Wesley Robinson 2019 The University of Western Ontario

Assessing The Role Of Drosophila Melanogaster Neuroligin 3 On Social Spacing And Climbing Behaviour, J. Wesley Robinson

Electronic Thesis and Dissertation Repository

Autism spectrum disorders can be clinically defined in part by impairments of social interactions. Social interactions can be modeled in Drosophila melanogaster with behaviours such as social spacing. Here, I examined the effects of autism-related gene neuroligin 3 on fly social spacing. I hypothesized if neuroligin 3 is mutated or gene expression is targeted for knockdown, then flies will have altered social space in males and females at different ages. Using the social space assay, I found that different mutations to neuroligin 3 change the fly’s behavior, in a mutation and sex-specific manner. Using an antibody against Nlg3, I ...


Modulation Of Actin Polymerization Affects Nucleocytoplasmic Transport In Multiple Forms Of Amyotrophic Lateral Sclerosis, Anthony Giampetruzzi, Eric W. Danielson, Valentina Gumina, Maryangel Jeon, Sivakumar Boopathy, Robert H. Brown Jr., Antonia Ratti, John E. Landers, Claudia Fallini 2019 University of Massachusetts Medical School

Modulation Of Actin Polymerization Affects Nucleocytoplasmic Transport In Multiple Forms Of Amyotrophic Lateral Sclerosis, Anthony Giampetruzzi, Eric W. Danielson, Valentina Gumina, Maryangel Jeon, Sivakumar Boopathy, Robert H. Brown Jr., Antonia Ratti, John E. Landers, Claudia Fallini

Open Access Articles

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown etiology. Although defects in nucleocytoplasmic transport (NCT) may be central to the pathogenesis of ALS and other neurodegenerative diseases, the molecular mechanisms modulating the nuclear pore function are still largely unknown. Here we show that genetic and pharmacological modulation of actin polymerization disrupts nuclear pore integrity, nuclear import, and downstream pathways such as mRNA post-transcriptional regulation. Importantly, we demonstrate that modulation of actin homeostasis can rescue nuclear pore instability and dysfunction caused by mutant PFN1 as well as by C9ORF72 repeat expansion, the most common mutation in ALS patients ...


Development Of An Imaging Analysis Algorithm For Fluorescence-Based High Content Screening In Parkinson’S Disease, Ryan Arlinghaus 2019 Purdue University

Development Of An Imaging Analysis Algorithm For Fluorescence-Based High Content Screening In Parkinson’S Disease, Ryan Arlinghaus

The Journal of Purdue Undergraduate Research

No abstract provided.


Optimizing Crispr/Cas9 For Gene Silencing Of Sod1 In Mouse Models Of Als, Zachary C. Kennedy 2019 University of Massachusetts Medical School

Optimizing Crispr/Cas9 For Gene Silencing Of Sod1 In Mouse Models Of Als, Zachary C. Kennedy

GSBS Dissertations and Theses

Mutations in the SOD1 gene are the best characterized genetic cause of amyotrophic lateral sclerosis (ALS) and account for ~20% of inherited cases and 1-3% of sporadic cases. The gene-editing tool Cas9 can silence mutant genes that cause disease, but effective delivery of CRISPR-Cas9 to the central nervous system (CNS) remains challenging. Here, I developed strategies using canonical Streptococcus pyogenes Cas9 to silence SOD1. In the first strategy, I demonstrate effectiveness of systemic delivery of guide RNA targeting SOD1 to the CNS in a transgenic mouse model expressing human mutant SOD1 and Cas9. Silencing was observed in both the brain ...


The Functional And Structural Analysis Of Drosophila Robo2 In Axon Guidance, LaFreda Janae Howard 2019 University of Arkansas, Fayetteville

The Functional And Structural Analysis Of Drosophila Robo2 In Axon Guidance, Lafreda Janae Howard

Theses and Dissertations

In animals with complex nervous systems such as mammals and insects, signaling pathways are responsible for guiding axons to their appropriate synaptic targets. Importantly, when this process is not successful during the development of an organism, outcomes include catastrophes such as human neurological diseases and disorders. It is vital to determine the underlying causes of such diseases by understanding the development of the nervous system. There are many pathways that have been identified to play a role in this, however, we lack an understanding of how these pathways can promote such diverse outcomes in different populations of neurons. These pathways ...


The Functional Conservation Of Frazzled In Insects, Benjamin Wadsworth 2019 University of Arkansas, Fayetteville

The Functional Conservation Of Frazzled In Insects, Benjamin Wadsworth

Theses and Dissertations

Axons in the developing embryo receive and react to signals that direct their growth to reach target tissues at specified locations. The signal pathways that direct midline crossing of axons during embryonic development have been comprehensively examined in the past years using the Drosophila ventral nerve cord or the spinal cord as a model system. A number of these signaling mechanisms are conserved, however disparities have been found between species in general strategy or the molecular signals controlling the response of axons to guidance cues.

The Netrin-Frazzled pathway has been shown to aid in midline crossing of axons in the ...


Intron And Small Rna Localization In Mammalian Neurons, Harleen Saini 2019 University of Massachusetts Medical School

Intron And Small Rna Localization In Mammalian Neurons, Harleen Saini

GSBS Dissertations and Theses

RNA molecules are diverse in form and function. They include messenger RNAs (mRNAs) that are templates for proteins, splice products such as introns that can generate functional noncoding RNAs, and a slew of smaller RNAs such as transfer RNAs (tRNAs) that help decode mRNAs into proteins. RNAs can show distinct patterns of subcellular localization that play an important role in protein localization. However, RNA distribution in cells is incompletely understood, with prior studies focusing primarily on RNAs that are long (>200 nucleotides), fully processed, and polyadenylated. We examined the distribution of RNAs in neurons. Neuronal compartments can be separated by ...


Nonnative Structure In A Peptide Model Of The Unfolded State Of Sod1: Implications For Als-Linked Aggregation, Noah R. Cohen, Jill A. Zitzewitz, Osman Bilsel, C. Robert Matthews 2019 University of Massachusetts Medical School

Nonnative Structure In A Peptide Model Of The Unfolded State Of Sod1: Implications For Als-Linked Aggregation, Noah R. Cohen, Jill A. Zitzewitz, Osman Bilsel, C. Robert Matthews

Open Access Articles

Dozens of mutations throughout the sequence of the gene encoding superoxide dismutase 1 (SOD1) have been linked to toxic protein aggregation in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). A parsimonious explanation for numerous genotypes resulting in a common phenotype would be mutation-induced perturbation of the folding free-energy surface that increases the populations of high-energy states prone to aggregation. The absence of intermediates in the folding of monomeric SOD1 suggests that the unfolded ensemble is a potential source of aggregation. To test this hypothesis, here we dissected SOD1 into a set of peptides end-labeled with FRET probes to model the ...


Co-Option Of Neurotransmitter Signaling For Inter-Organismal Communication In C. Elegans, Christopher D. Chute, Elizabeth M. DiLoreto, Ying K. Zhang, Douglas K. Reilly, Diego Rayes, Veronica L. Coyle, Hee June Choi, Mark J. Alkema, Frank C. Schroeder, Jagan Srinivasan 2019 Worcester Polytechnic Institute

Co-Option Of Neurotransmitter Signaling For Inter-Organismal Communication In C. Elegans, Christopher D. Chute, Elizabeth M. Diloreto, Ying K. Zhang, Douglas K. Reilly, Diego Rayes, Veronica L. Coyle, Hee June Choi, Mark J. Alkema, Frank C. Schroeder, Jagan Srinivasan

Neurobiology Publications

Biogenic amine neurotransmitters play a central role in metazoan biology, and both their chemical structures and cognate receptors are evolutionarily conserved. Their primary roles are in cell-to-cell signaling, as biogenic amines are not normally recruited for communication between separate individuals. Here, we show that in the nematode C. elegans, a neurotransmitter-sensing G protein-coupled receptor, TYRA-2, is required for avoidance responses to osas#9, an ascaroside pheromone that incorporates the neurotransmitter, octopamine. Neuronal ablation, cell-specific genetic rescue, and calcium imaging show that tyra-2 expression in the nociceptive neuron, ASH, is necessary and sufficient to induce osas#9 avoidance. Ectopic expression in ...


Comparison Of Nickel And Cobalt Induced Hypoxic Cell Models Using Cell Proliferation Assay, Melissa DelCasale 2019 Seton Hall University

Comparison Of Nickel And Cobalt Induced Hypoxic Cell Models Using Cell Proliferation Assay, Melissa Delcasale

Seton Hall University Dissertations and Theses (ETDs)

Hypoxia is an imbalance in oxygen delivery and oxygen consumption, ultimately affecting cell survival. Low levels of oxygen diminish adenosine triphosphate synthesis resulting from a decline in oxidative phosphorylation in the mitochondria, therefore inducing apoptosis and cell death. To create a hypoxia mimicked environment, we used hypoxia mimetic compounds cobalt and nickel to treat human neuroblastoma (NMB) cells. Using hypoxic mimic human neuronal cell models, we examined and compared the effects of compound-induced hypoxia on NMB cell proliferation. The cells were treated with 100mM and 300mM concentrations of each compound at 24- and 48-hour intervals. To investigate cell proliferation, the ...


Molecular Specialization Of Gabaergic Synapses On The Soma And Axon In Cortical And Hippocampal Circuit Function And Dysfunction, April Contreras, Dustin J. Hines, Rochelle M. Hines 2019 University of Nevada, Las Vegas

Molecular Specialization Of Gabaergic Synapses On The Soma And Axon In Cortical And Hippocampal Circuit Function And Dysfunction, April Contreras, Dustin J. Hines, Rochelle M. Hines

Psychology Faculty Publications

The diversity of inhibitory interneurons allows for the coordination and modulation of excitatory principal cell firing. Interneurons that release GABA (γ-aminobutyric acid) onto the soma and axon exert powerful control by virtue of proximity to the site of action potential generation at the axon initial segment (AIS). Here, we review and examine the cellular and molecular regulation of soma and axon targeting GABAergic synapses in the cortex and hippocampus. We also describe their role in controlling network activity in normal and pathological states. Recent studies have demonstrated a specific role for postsynaptic dystroglycan in the formation and maintenance of cholecystokinin ...


Investigation Of Even-Skipped, A Developmentally-Regulated Gene Controlling Neural Segmentation In Dragonflies, Kathryn Bangser 2019 Union College - Schenectady, NY

Investigation Of Even-Skipped, A Developmentally-Regulated Gene Controlling Neural Segmentation In Dragonflies, Kathryn Bangser

Honors Theses

A comprehensive understanding of the genetic mechanisms underlying pattern formation and neurogenesis is necessary in order to trace the evolutionary history of insect embryogenesis.

One of the most important processes of embryogenesis is the organized pattern formation that allows for proper body segmentation and neural development. Proper segmentation, which relies on a series of specific gene expressions, is necessary for the development of an operational nervous system. Even-skipped (eve), one such regulatory gene, has been studied extensively in certain model organisms, and theories regarding the evolution of its functional role could be further elucidated by visualizing its expression in adult ...


Novel Characterization Of The Role Of Orthologous Xap5 In Caenorhabditis Elegans, Nabor Vazquez 2019 Lawrence University

Novel Characterization Of The Role Of Orthologous Xap5 In Caenorhabditis Elegans, Nabor Vazquez

Lawrence University Honors Projects

Cilia are one of the oldest and most well conserved cellular organelles. Cilia provide an essential role in cellular locomotion, fluid regulation, and are a site for signal transduction pathways involved in sensation. A new study suggests that XAP5 is a transcription factor in a unicellular organism, Chlamydomonas reinhardtii, which regulates gene expression needed for proper cilium assembly. Our study investigates the conservation of the role of XAP5 in a multicellular system, Caenorhabditis elegans. Alignments between protein, coding region, and promoter sequences for XAP5 orthologs from related species show a good conservation in DNA and protein sequences. As part of ...


Towards A Better Understanding Of Temporomandibular Disorder, Jessica R. Cox 2019 MIssouri State University

Towards A Better Understanding Of Temporomandibular Disorder, Jessica R. Cox

MSU Graduate Theses

Results from the OPPERA study provided evidence that risk factors such as neck muscle tension, prolonged jaw opening, and female gender increase the likelihood of developing temporomandibular joint disorders (TMJD), which are prevalent, debilitating orofacial pain conditions. Peripheral and central sensitization, which mediate a lowering of the stimulus required for pain signaling, are implicated in the underlying pathology of chronic TMJD. The goal of my study was to investigate cellular changes in the expression of proteins associated with the development of central sensitization. Female Sprague-Dawley rats were injected with complete Freund’s adjuvant in the upper trapezius muscles to promote ...


Mechanisms Of Calcium-Dependent Neurotransmission In Photoreceptors, Justin J. Grassmeyer 2019 University of Nebraska Medical Center

Mechanisms Of Calcium-Dependent Neurotransmission In Photoreceptors, Justin J. Grassmeyer

Theses & Dissertations

Rod and cone photoreceptors initiate vision by transforming light into graded membrane voltage changes that in turn dictate the rate of continuous Ca2+-dependent neurotransmission to postsynaptic neurons. Continuous release relies on synaptic ribbons at photoreceptor active zones, which organize exocytotic proteins and deliver vesicles to release sites near voltage-gated Ca2+ channels. Individual cones possess multiple ribbon synapses at which they contact postsynaptic neurons. We examined heterogeneity in signaling at individual ribbon synapses in salamander cones by measuring the voltage dependence of Ca2+ currents (ICa) and Ca2+ influx at individual ribbon release sites. Ca2 ...


Quantifying Expression Of Interneuron Subtype Markers For Dlx-2 Transfected Ng2 Cells, Timothy Nolan 2019 University of Connecticut

Quantifying Expression Of Interneuron Subtype Markers For Dlx-2 Transfected Ng2 Cells, Timothy Nolan

Honors Scholar Theses

Neurons are a post-mitotic cell population, and therefore, they are not able to regenerate in vivo after a traumatic injury. Because inhibitory GABAergic interneurons and oligodendrocyte precursor cells (OPCs) are derived from the same precursor, recent studies have focused on transforming these OPCs into GABAergic neurons. However, there are different types of GABAergic interneurons that have different electrophysiological responses, which can lead to functional differences. The Nishiyama laboratory had already used a key gene in GABAergic interneuron and OPC differentiation, Distal-less homeobox 2 (Dlx-2), to transfect OPCs; early electrophysiology tests showed most of these transfected cells behaved like immature neurons ...


Development Of A High-Throughput System For Screening Of Anti-Prion Molecules, Katherine Do 2019 The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences

Development Of A High-Throughput System For Screening Of Anti-Prion Molecules, Katherine Do

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access)

The misfolded prion protein causes and transmits disease in both humans and animals. As other infectious agents, prions display strain variation, which can generate different pathological outcomes in affected individuals. Unfortunately, there are no known therapies for these diseases, which at present are invariably fatal. In this work, the Protein Misfolding Cyclic Amplification technology (PMCA, an in vitro test that replicates minimum quantities of infectious prions) has been modified to screen for small molecules inhibiting prion protein misfolding in a strain-specific manner. In order to approach a high-throughput PMCA system, technical aspects in PMCA has been optimized for application of ...


Rejuvenation Of The Epigenetic Landscape Of The Aged Brain Through Manipulation Of Circulating Factors, Edward Koellhoffer 2019 The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences

Rejuvenation Of The Epigenetic Landscape Of The Aged Brain Through Manipulation Of Circulating Factors, Edward Koellhoffer

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access)

The aging population of the United States is expanding at an alarming rate. The Center for Disease Control and Prevention estimates that the population of those age 65 years and older will reach over 50 million by 2020 and will double to 100 million by 2060. This will not only put a massive strain on national healthcare resources, but will also increase the number of those who are not able to live and function independently. It is becoming increasingly vital to understand how the brain changes with age and mechanisms to possibly protect and rejuvenate the aged brain to a ...


The Effect Of Cysteine-Reactive Catechol Antioxidants On Alcohol Dehydrogenase As A Model For Oxidative Stress In Neurodegenerative Disease, Rachel Smith 2019 William & Mary

The Effect Of Cysteine-Reactive Catechol Antioxidants On Alcohol Dehydrogenase As A Model For Oxidative Stress In Neurodegenerative Disease, Rachel Smith

Undergraduate Honors Theses

The cellular mechanisms underlying age-related neurodegeneration, especially in disease states, are poorly understood. Oxidative stress has been heavily implicated as one factor both produced by and contributing to the progression of neurodegenerative diseases such as Alzheimer’s disease. In particular, it can destroy a cell’s ability to produce energy through aerobic and anaerobic respiration, thus leading to the death of individual cells and brain tissues as a whole. This study focuses on the relationship between oxidative stress and energy production in disease states. In particular, we examine the ability of catechol molecules to take on pro-oxidative properties and modify ...


Digital Commons powered by bepress