Open Access. Powered by Scholars. Published by Universities.®

Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

2264 Full-Text Articles 4764 Authors 258335 Downloads 131 Institutions

All Articles in Genetics

Faceted Search

2264 full-text articles. Page 1 of 63.

Heterologous Expression Of A Rice Mir395 Gene In Nicotiana Tabacum Impairs Sulfate Homeostasis, Ning Yuan, Shuangrong Yuan, Zhigang Li, Dayong Li, Qian Hu, Hong Luo 2016 Clemson University

Heterologous Expression Of A Rice Mir395 Gene In Nicotiana Tabacum Impairs Sulfate Homeostasis, Ning Yuan, Shuangrong Yuan, Zhigang Li, Dayong Li, Qian Hu, Hong Luo

Publications

Sulfur participates in many important mechanisms and pathways of plant development. The most common source of sulfur in soil –SO42−– is absorbed into root tissue and distributed into aerial part through vasculature system, where it is reduced into sulfite and finally sulfide within the subcellular organs such as chloroplasts and mitochondria and used for cysteine and methionine biosynthesis. MicroRNAs are involved in many regulation pathways by repressing the expression of their target genes. MiR395 family in Arabidopsis thaliana has been reported to be an important regulator involved in sulfate transport and assimilation, and a high-affinity sulphate transporter and ...


Patterning Defects In Silkworm Embryos Analysed Through Cuticle Preparations, Amit Singh, Madhuri Kango-Singh, K. P. Gopinathan 2016 University of Dayton

Patterning Defects In Silkworm Embryos Analysed Through Cuticle Preparations, Amit Singh, Madhuri Kango-Singh, K. P. Gopinathan

Madhuri Kango-Singh

The mulberry silkworm, Bombyx mori, a holometabolous lepidopteran insect, has a metameric body plan. Due to its functional adaptation, B. mori presents some unique deviations in its pal/ern from the evolutionarily advanced dipteran insect, Drosophila melanogaster. Previous studies on mutant phenotype analysis in B. mori have been carried out in late stages of larval development. Here we employ, the cuticle preparation approach during embryonic development to study morphological landmarks associated with B. mori, Eri, another race a/silkworm, and pattern defects associated with Ekp mutant of B.mori. The homeotic mutant Ekp, generates ectopic abdominallegs, a feature previously documented ...


Eye Suppression, A Novel Function Of Teashirt, Requires Wingless Signaling, Amit Singh, Madhuri Kango-Singh, Y. Henry Sun 2016 University of Dayton

Eye Suppression, A Novel Function Of Teashirt, Requires Wingless Signaling, Amit Singh, Madhuri Kango-Singh, Y. Henry Sun

Madhuri Kango-Singh

Teashirt (tsh) encodes a Drosophila zinc-finger protein. Misexpression of tsh has been shown to induce ectopic eye formation in the antenna. We report that tsh can suppress eye development. This novel function of tsh is due to the induction of homothorax (hth), a known repressor of eye development, and requires Wingless (WG) signaling. Interestingly, tsh has different functions in the dorsal and ventral eye, suppressing eye development close to the ventral margin, while promoting eye development near the dorsal margin. It affects both growth of eye disc and retinal cell differentiation.


Lobe And Serrate Are Required For Cell Survival During Early Eye Development In Drosophila, Amit Singh, Xiao Shi, Kwang-Wook Choi 2016 University of Dayton

Lobe And Serrate Are Required For Cell Survival During Early Eye Development In Drosophila, Amit Singh, Xiao Shi, Kwang-Wook Choi

Amit Singh

Organogenesis involves an initial surge of cell proliferation, leading to differentiation. This is followed by cell death in order to remove extra cells. During early development, there is little or no cell death. However, there is a lack of information concerning the genes required for survival during the early cell-proliferation phase. Here, we show that Lobe (L) and the Notch (N) ligand Serrate (Ser), which are both involved in ventral eye growth, are required for cell survival in the early eye disc. We observed that the loss-of-ventral-eye phenotype in L or Ser mutants is due to the induction of cell ...


The Hippo Pathway Effector Yki Downregulates Wg Signaling To Promote Retinal Differentiation In The Drosophila Eye, Erika Lynn Wittkorn, Ankita Sarkar, Kristine Garcia, Madhuri Kango-Singh, Amit Singh 2016 University of Dayton

The Hippo Pathway Effector Yki Downregulates Wg Signaling To Promote Retinal Differentiation In The Drosophila Eye, Erika Lynn Wittkorn, Ankita Sarkar, Kristine Garcia, Madhuri Kango-Singh, Amit Singh

Amit Singh

The evolutionarily conserved Hippo signaling pathway is known to regulate cell proliferation and maintain tissue homeostasis during development. We found that activation of Yorkie (Yki), the effector of the Hippo signaling pathway, causes separable effects on growth and differentiation of theDrosophila eye. We present evidence supporting a role for Yki in suppressing eye fate by downregulation of the core retinal determination genes. Other upstream regulators of the Hippo pathway mediate this effect of Yki on retinal differentiation. Here, we show that, in the developing eye, Yki can prevent retinal differentiation by blocking morphogenetic furrow (MF) progression and R8 specification. The ...


Neurodegeneration - A Means To An End, Amit Singh 2016 University of Dayton

Neurodegeneration - A Means To An End, Amit Singh

Amit Singh

Cell death, a global phenomenon found throughout the animal kingdom, is a mechanism to maintain tissue homeostasis and for adaptation to changes in the environment [1,2]. Millions of cells die in our body daily- they succumb to stress and commit suicide by a mechanism referred to as cell death or apoptosis [2-4]. Under normal conditions cells are continuously replaced by new cells from the stemor progenitor- cells. For example, an optimum balance in shedding of dead cells from the skin and their replenishment by new ones maintain our health and hygiene. In this context, apoptosis is a mechanism to ...


Initial State Of The Drosophila Eye Before Dorsoventral Specification Is Equivalent To Ventral, Amit Singh, Kwang-Wook Choi 2016 University of Dayton

Initial State Of The Drosophila Eye Before Dorsoventral Specification Is Equivalent To Ventral, Amit Singh, Kwang-Wook Choi

Amit Singh

Dorsoventral (DV) patterning is crucial for eye development in invertebrates and higher animals. DV lineage restriction is the primary event in undifferentiated early eye primordia of Drosophila. InDrosophila eye disc, a dorsal-specific GATA family transcription factor pannier (pnr) controls Iroquois-Complex (Iro-C) genes to establish the dorsal eye fate whereas Lobe (L), which is involved in controlling a Notch ligand Serrate (Ser), is specifically required for ventral growth. However, fate of eye disc cells before the onset of dorsal expression of pnr and Iro-C is not known. We show that L/Ser are expressed in entire early eye disc before ...


Cell Type-Specific Responses To Wingless, Hedgehog And Decapentaplegic Are Essential For Patterning Early Eye-Antenna Disc In Drosophila, Jong-Hoon Won, Orkhon Tsogtbartarr, Wonseok Son, Amit Singh, Kwang-Wook Choi, Kyung-Ok Cho 2016 Korea Advanced Institute of Science and Technology

Cell Type-Specific Responses To Wingless, Hedgehog And Decapentaplegic Are Essential For Patterning Early Eye-Antenna Disc In Drosophila, Jong-Hoon Won, Orkhon Tsogtbartarr, Wonseok Son, Amit Singh, Kwang-Wook Choi, Kyung-Ok Cho

Amit Singh

The Drosophila eye-antenna imaginal disc (ead) is a flattened sac of two-layered epithelia, from which most head structures are derived. Secreted morphogens like Wingless (Wg), Hedgehog (Hh), and Decapentaplegic (Dpp) are important for early patterning of ead, but the underlying mechanisms are still largely unknown. To understand how these morphogens function in the ead of early larval stages, we used wg-LacZ and dpp-Gal4 markers for the examination of wild-type and mutant eads. We found that the ead immediately after hatching was crescent-shaped with the Bolwig’s nerve at the ventral edge, suggesting that it consists of dorsal domain. In a ...


Eye Development At The Houston "Fly Meeting", Amit Singh 2016 University of Dayton

Eye Development At The Houston "Fly Meeting", Amit Singh

Amit Singh

Meeting report: The 47th Annual Drosophila Research Conference or "Fly Meeting" took place at Houston, Texas, USA from March 29th- April 2nd, 2006, under the aegis of the Genetics Society of America. The Fly Meeting provides an excellent opportunity for fly researchers to present their work and to get a snapshot of recent developments and upcoming trends in their research field. The fruit fly, Drosophila melanogaster, is a very versatile model to study growth, patterning, neural development, evolution, systemetics and various other facets of biomedical science. The topics presented in the meeting covered a very broad spectrum of fly research ...


Eye Suppression, A Novel Function Of Teashirt, Requires Wingless Signaling, Amit Singh, Madhuri Kango-Singh, Y. Henry Sun 2016 University of Dayton

Eye Suppression, A Novel Function Of Teashirt, Requires Wingless Signaling, Amit Singh, Madhuri Kango-Singh, Y. Henry Sun

Amit Singh

Teashirt (tsh) encodes a Drosophila zinc-finger protein. Misexpression of tsh has been shown to induce ectopic eye formation in the antenna. We report that tsh can suppress eye development. This novel function of tsh is due to the induction of homothorax (hth), a known repressor of eye development, and requires Wingless (WG) signaling. Interestingly, tsh has different functions in the dorsal and ventral eye, suppressing eye development close to the ventral margin, while promoting eye development near the dorsal margin. It affects both growth of eye disc and retinal cell differentiation.


Rapid Evolution Of Sex-Pheromone-Producing Enzyme In Drosophila, Troy R. Shirangi, Héloïse D. Dufour, Thomas M. Williams, Sean B. Carroll 2016 University of Wisconsin-Madison

Rapid Evolution Of Sex-Pheromone-Producing Enzyme In Drosophila, Troy R. Shirangi, Héloïse D. Dufour, Thomas M. Williams, Sean B. Carroll

Thomas M. Williams

A wide range of organisms use sex pheromones to communicate with each other and to identify appropriate mating partners. While the evolution of chemical communication has been suggested to cause sexual isolation and speciation, the mechanisms that govern evolutionary transitions in sex pheromone production are poorly understood. Here, we decipher the molecular mechanisms underlying the rapid evolution in the expression of a gene involved in sex pheromone production in Drosophilid flies. Long-chain cuticular hydrocarbons (e.g., dienes) are produced female-specifically, notably via the activity of the desaturase DESAT-F, and are potent pheromones for male courtship behavior in Drosophila melanogaster. We ...


The Evolutionary Origination And Diversification Of A Dimorphic Gene Regulatory Network Through Parallel Innovations In Cis And Trans, Eric M. Camino, John C. Butts, Alison J. Ordway, Jordan E. Vellky, Mark Rebeiz, Thomas M. Williams 2016 University of Dayton

The Evolutionary Origination And Diversification Of A Dimorphic Gene Regulatory Network Through Parallel Innovations In Cis And Trans, Eric M. Camino, John C. Butts, Alison J. Ordway, Jordan E. Vellky, Mark Rebeiz, Thomas M. Williams

Thomas M. Williams

The origination and diversification of morphological characteristics represents a key problem in understanding the evolution of development. Morphological traits result from gene regulatory networks (GRNs) that form a web of transcription factors, which regulate multiple cis-regulatory element (CRE) sequences to control the coordinated expression of differentiation genes. The formation and modification of GRNs must ultimately be understood at the level of individual regulatory linkages (i.e., transcription factor binding sites within CREs) that constitute the network. Here, we investigate how elements within a network originated and diversified to generate a broad range of abdominal pigmentation phenotypes among Sophophora fruit ...


Quantitative Comparison Of Cis-Regulatory Element (Cre) Activities In Transgenic Drosophila Melanogaster, William A. Rogers, Thomas M. Williams 2016 University of Dayton

Quantitative Comparison Of Cis-Regulatory Element (Cre) Activities In Transgenic Drosophila Melanogaster, William A. Rogers, Thomas M. Williams

Thomas M. Williams

Gene expression patterns are specified by cis-regulatory element (CRE) sequences, which are also called enhancers or cis-regulatory modules. A typical CRE possesses an arrangement of binding sites for several transcription factor proteins that confer a regulatory logic specifying when, where, and at what level the regulated gene(s) is expressed. The full set of CREs within an animal genome encodes the organism′s program for development1, and empirical as well as theoretical studies indicate that mutations in CREs played a prominent role in morphological evolution2-4. Moreover, human genome wide association studies indicate that genetic variation in CREs ...


Recurrent Modification Of A Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity, William A. Rogers, Joseph R. Salomone, David J. Tacy, Eric M. Camino, Kristen A. Davis, Mark Rebeiz, Thomas M. Williams 2016 University of Dayton

Recurrent Modification Of A Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity, William A. Rogers, Joseph R. Salomone, David J. Tacy, Eric M. Camino, Kristen A. Davis, Mark Rebeiz, Thomas M. Williams

Thomas M. Williams

The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. InDrosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development ...


Protein Trap Lines Of Drosophila To Demonstrate Spatio-Temporal Localization Of Proteins In An Undergraduate Lab, Oorvashi Roy Puli, Amit Singh 2016 University of Dayton

Protein Trap Lines Of Drosophila To Demonstrate Spatio-Temporal Localization Of Proteins In An Undergraduate Lab, Oorvashi Roy Puli, Amit Singh

Amit Singh

The objective of this teaching note is to generate a laboratory exercise, which allows students to get a hands-on experience of a cell biology technique. The short duration of the laboratory classes is the biggest challenge with the development of a cell biology lab for an undergraduate curriculum. Therefore, it is necessary to design a laboratory exercise that enables the students to carry out cell biological assays in the desired time. This laboratory exercise focuses on tracking protein expression levels along a spatial (space) and temporal (time) axis in developing Drosophila melanogaster organ primordium. Here we use the protein trap ...


A Cell Biology Laboratory Exercise To Study Sub-Cellular Organelles In Drosophila, Meghana Tare, Amit Singh 2016 University of Dayton

A Cell Biology Laboratory Exercise To Study Sub-Cellular Organelles In Drosophila, Meghana Tare, Amit Singh

Amit Singh

The fast-changing scenario of undergraduate education puts emphasis on introducing students to hands-on techniques as part of their laboratory courses. In order to cater to large numbers of students and the time constraints involved with undergraduate level laboratory courses, there is a need for development of experiments that are cost effective and can be completed in a defined time frame. We have devised a laboratory exercise for teaching cell biology using the Drosophila melanogaster model. Drosophila can be reared in a short period of time in a cost effective manner. We used Drosophila tissue to study the sub-cellular organization of ...


Drosophila Adult Eye Model To Teach Scanning Electron Microscopy In An Undergraduate Cell Biology Laboratory, Meghana Tare, Oorvashi Roy Puli, Sarah M. Oros, Amit Singh 2016 University of Dayton

Drosophila Adult Eye Model To Teach Scanning Electron Microscopy In An Undergraduate Cell Biology Laboratory, Meghana Tare, Oorvashi Roy Puli, Sarah M. Oros, Amit Singh

Amit Singh

We have devised an undergraduate laboratory exercise to study tissue morphology using fruit fly, Drosophila melanogaster, as the model organism. Drosophila can be reared in a cost effective manner in a short period of time. This experiment was a part of the undergraduate curriculum of the cell biology laboratory course aimed to demonstrate the use of scanning electron microscopy (SEM) technique to study the morphology of adult eye of Drosophila. The adult eye of Drosophila is a compound eye, which comprises of 800 unit eyes, and serves as an excellent model for SEM studies. We used flies that were mutant ...


Genetic Changes To A Transcriptional Silencer Element Confers Phenotypic Diversity Within And Between Drosophila Species, Winslow C. Johnson, Alison J. Ordway, Masayoshi Watada, Jonathan N. Pruitt, Thomas M. Williams, Mark Rebeiz 2016 University of Pittsburgh

Genetic Changes To A Transcriptional Silencer Element Confers Phenotypic Diversity Within And Between Drosophila Species, Winslow C. Johnson, Alison J. Ordway, Masayoshi Watada, Jonathan N. Pruitt, Thomas M. Williams, Mark Rebeiz

Thomas M. Williams

The modification of transcriptional regulation has become increasingly appreciated as a major contributor to morphological evolution. However, the role of negative-acting control elements (e.g. silencers) in generating morphological diversity has been generally overlooked relative to positive-acting “enhancer” elements. The highly variable body coloration patterns among Drosophilid insects represents a powerful model system in which the molecular alterations that underlie phenotypic diversity can be defined. In a survey of pigment phenotypes among geographically disparate Japanese populations of Drosophila auraria, we discovered a remarkable degree of variation in male-specific abdominal coloration. In testing the expression patterns of the major pigment-producing enzymes ...


Determination Of The Gelation Mechanism Of Freeze–Thawed Hen Egg Yolk, Carmen Au, Nuria C. Acevedo, Harry T. Horner, Tong Wang 2016 Iowa State University

Determination Of The Gelation Mechanism Of Freeze–Thawed Hen Egg Yolk, Carmen Au, Nuria C. Acevedo, Harry T. Horner, Tong Wang

Harry Horner

A study of yolks stored up to 168 d at −20 °C was conducted to determine the gelation behavior and mechanism of freeze–thawed yolk. Methods used were rheology, native and sodium dodecyl sulfate polyacrylamide gel electrophoresis (native- and SDS-PAGE), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), particle size analysis, and proton nuclear magnetic resonance (1H NMR) spectroscopy for matrix mobility. Results indicate that both constituents of plasma and granules contributed to gelation of yolk under freezing. PAGE analyses suggest that granular proteins participated in aggregation during freeze–thaw. Increasing gel strength and particle size and decreasing water and ...


Genetic Analysis Reveals A Hierarchy Of Interactions Between Polycystin-Encoding Genes And Genes Controlling Cilia Function During Left-Right Determination, Daniel T. Grimes, Jennifer L. Keynton, Maria T. Buenavista, Xingjian Jin, Saloni H. Patel, Shinohara Kyosuke, Jennifer Vibert, Debbie J. Williams, Hiroshi Hamada, Rohana Hussain, Surya M. Nauli, Dominic P. Norris 2016 MRC Harwell

Genetic Analysis Reveals A Hierarchy Of Interactions Between Polycystin-Encoding Genes And Genes Controlling Cilia Function During Left-Right Determination, Daniel T. Grimes, Jennifer L. Keynton, Maria T. Buenavista, Xingjian Jin, Saloni H. Patel, Shinohara Kyosuke, Jennifer Vibert, Debbie J. Williams, Hiroshi Hamada, Rohana Hussain, Surya M. Nauli, Dominic P. Norris

Pharmacy Faculty Articles and Research

During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This ‘nodal flow’ is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we ...


Digital Commons powered by bepress