Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

13,535 Full-Text Articles 29,480 Authors 2,814,251 Downloads 290 Institutions

All Articles in Biochemistry, Biophysics, and Structural Biology

Faceted Search

13,535 full-text articles. Page 482 of 531.

Impact Of Collateral Enlargement On Smooth Muscle Phenotype, Alexander Jerome Bynum 2011 California Polytechnic State University, San Luis Obispo

Impact Of Collateral Enlargement On Smooth Muscle Phenotype, Alexander Jerome Bynum

Master's Theses

Peripheral Artery Disease is a very serious disease characterized by an arterial occlusion due to atherosclerotic plaques. In response to an arterial occlusion, arteriogenesis occurs, causing smooth muscle cells to transition from a contractile to synthetic state. Also following an arterial occlusion, functional impairment was seen in the collateral circuit. An immunofluorescence protocol was developed in order to assess the impact of collateral enlargement (arteriogenesis) on smooth muscle phenotype at various time points. Smooth muscle α-actin was used to mark all smooth muscle cells, Ki-67 was used to label proliferating smooth muscle cells, and a fluorescent nuclear stain was used …


Definition Of The Landscape Of Chromatin Structure At The Frataxin Gene In Friedreich’S Ataxia, Eunah Kim 2011 The University of Texas Graduate School of Biomedical Sciences at Houston

Definition Of The Landscape Of Chromatin Structure At The Frataxin Gene In Friedreich’S Ataxia, Eunah Kim

Dissertations & Theses (Open Access)

Friedreich’s ataxia (FRDA) is caused by the transcriptional silencing of the frataxin (FXN) gene. FRDA patients have expansion of GAA repeats in intron 1 of the FXN gene in both alleles. A number of studies demonstrated that specific histone deacetylase inhibitors (HDACi) affect either histone modifications at the FXN gene or FXN expression in FRDA cells, indicating that the hyperexpanded GAA repeat may facilitate heterochromatin formation. However, the correlation between chromatin structure and transcription at the FXN gene is currently limited due to a lack of more detailed analysis. Therefore, I analyzed the effects of the hyperexpanded GAA …


Getting Heavy: An Exploration Into The Effects Of D2o And High Hydrostatic Pressure On R67 Dihydrofolate Reductase, Mary Jane Timson 2011 University of Tennessee - Knoxville

Getting Heavy: An Exploration Into The Effects Of D2o And High Hydrostatic Pressure On R67 Dihydrofolate Reductase, Mary Jane Timson

Masters Theses

Chromosomal dihydrofolate reductase (DHFR) enzymatically reduces dihydrofolate (DHF) to tetrahydrofolate (THF) using NADPH as a cofactor. R67 DHFR is an R-plasmid encoded enzyme that confers resistance to trimethoprim (TMP), an antibacterial drug. It shares no structural homology with TMP targeted, chromosomal DHFRs.

Previous osmolyte studies in our lab have indicated that DHF binding to R67 DHFR is accompanied by water uptake and NADPH binding is accompanied by water release. These data suggest that water plays a role in balancing the binding affinity. This may happen as R67 DHFR has a generalized binding surface and may need differential water effects to …


Global And Specific Controls Of Protein Synthesis In Hibernators, Peipei Pan 2011 University of Nevada, Las Vegas

Global And Specific Controls Of Protein Synthesis In Hibernators, Peipei Pan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Mammalian hibernation is a highly dynamic physiological process that is composed of a series of torpor bouts, wherein hibernators oscillate between periods of torpor and interbout arousal. Although normally vital to homeostasis, many energetically consumptive processes such as translation or protein synthesis are virtually ceased during hibernation. Earlier studies indicated that protein synthesis had fallen to almost negligible levels. Cap-dependent initiation of translation is well regulated by eukaryotic translation initiation factor 4E (eIF4E) and its binding partner eIF4E-binding protein 1 (4E-BP1) when hibernators cycle in and out the torpor state. Herein, I investigated well-characterized regulatory mechanisms of global and specific …


Living With Emerging Contaminants: Proteomics Of 4-Nonylphenol Exposed Arrow Goby (Clevelandia Ios), Sarah Emily Johnson 2011 California Polytechnic State University, San Luis Obispo

Living With Emerging Contaminants: Proteomics Of 4-Nonylphenol Exposed Arrow Goby (Clevelandia Ios), Sarah Emily Johnson

Master's Theses

Alkylphenol ethoxylates (APEs) are widely used in industrial and household products as surfactants. APEs degrade into more toxic ethoxylates, such as 4-nonylphenol (NP), which has been shown to be an endocrine disruptor and enhance the growth of tumor cells. Nonylphenol is wider spread in Pacific estuaries than originally thought. Organisms in Morro Bay, California contain some of the highest concentrations of NP reported, while containing few other contaminants. As a benthic mud-dwelling fish, the arrow goby (Clevelandia ios) may be exposed to high levels of NP due to high contaminant sequestration rates in anaerobic mud. While ecotoxicology suggests …


A Polymerase Chain Reaction Method For The Detection Of Selenomonas Noxia, Arthuro Mehretu 2011 University of Nevada, Las Vegas

A Polymerase Chain Reaction Method For The Detection Of Selenomonas Noxia, Arthuro Mehretu

UNLV Theses, Dissertations, Professional Papers, and Capstones

In recent studies, periodontal health has been linked to being overweight and/or obese. Among common oral bacteria, Selenomonas noxia has been implicated in converting periodontal health to disease. Selenomonas spp. have also been found in gastric ulcers, and were misdiagnosed as Helicobacter -like organisms, but no further studies were conducted. The increasing clinical and epidemiological importance of S. noxia necessitates the development of a rapid detection method. In this study, a TaqMan 16S rRNA based real-time Polymerase Chain Reaction (PCR) method was developed, optimized and evaluated for the rapid and specific detection of S. noxia . The 16S PCR assay …


The Occurrence Of A Thylakoid-Localized Small Zinc Finger Protein In Land Plants, Yan Lu 2011 Western Michigan University

The Occurrence Of A Thylakoid-Localized Small Zinc Finger Protein In Land Plants, Yan Lu

Yan Lu

No abstract provided.


Planning Combinatorial Disulfide Cross-Links For Protein Fold Determination, Fei Xiong, Alan M Friedman, Chris Bailey-Kellogg 2011 Dartmouth College

Planning Combinatorial Disulfide Cross-Links For Protein Fold Determination, Fei Xiong, Alan M Friedman, Chris Bailey-Kellogg

Dartmouth Scholarship

Fold recognition techniques take advantage of the limited number of overall structural organizations, and have become increasingly effective at identifying the fold of a given target sequence. However, in the absence of sufficient sequence identity, it remains difficult for fold recognition methods to always select the correct model. While a native-like model is often among a pool of highly ranked models, it is not necessarily the highest-ranked one, and the model rankings depend sensitively on the scoring function used. Structure elucidation methods can then be employed to decide among the models based on relatively rapid biochemical/biophysical experiments.


Crystal Structure Of Human Thymidylate Synthase: A Structural Mechanism For Guiding Substrates Into The Active Site, Celia Schiffer, Ian Clifton, V. Jo Davisson, Daniel Santi, Robert Stroud 2011 University of Massachusetts Medical School

Crystal Structure Of Human Thymidylate Synthase: A Structural Mechanism For Guiding Substrates Into The Active Site, Celia Schiffer, Ian Clifton, V. Jo Davisson, Daniel Santi, Robert Stroud

Celia A. Schiffer

The crystal structure of human thymidylate synthase, a target for anti-cancer drugs, is determined to 3.0 A resolution and refined to a crystallographic residual of 17.8%. The structure implicates the enzyme in a mechanism for facilitating the docking of substrates into the active site. This mechanism involves a twist of approximately 180 degrees of the active site loop, pivoted around the neighboring residues 184 and 204, and implicates ordering of external, eukaryote specific loops along with the well-characterized closure of the active site upon substrate binding. The highly conserved, but eukaryote-specific insertion of twelve residues 90-101 (h117-128), and of eight …


Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer 2011 University of Massachusetts Medical School

Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer

Celia A. Schiffer

HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All …


Evaluation Of The Substrate Envelope Hypothesis For Inhibitors Of Hiv-1 Protease, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Celia Schiffer, Michael Gilson 2011 University of Maryland Biotechnology Institute

Evaluation Of The Substrate Envelope Hypothesis For Inhibitors Of Hiv-1 Protease, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Celia Schiffer, Michael Gilson

Celia A. Schiffer

Crystallographic data show that various substrates of HIV protease occupy a remarkably uniform region within the binding site; this region has been termed the substrate envelope. It has been suggested that an inhibitor that fits within the substrate envelope should tend to evade viral resistance because a protease mutation that reduces the affinity of the inhibitor will also tend to reduce the affinity of substrate, and will hence decrease the activity of the enzyme. Accordingly, inhibitors that fit the substrate envelope better should be less susceptible to clinically observed resistant mutations, since these must also allow substrates to bind. The …


Expression, Purification, And Characterization Of Thymidylate Synthase From Lactococcus Lactis, Patricia Greene, Pak-Lam Yu, Jia Zhao, Celia Schiffer, Daniel Santi 2011 University of Massachusetts Medical School

Expression, Purification, And Characterization Of Thymidylate Synthase From Lactococcus Lactis, Patricia Greene, Pak-Lam Yu, Jia Zhao, Celia Schiffer, Daniel Santi

Celia A. Schiffer

The thymidylate synthase (TS) gene from Lactococcus lactis has been highly expressed in Escherichia coli. The TS protein was purified by sequential chromatography on Q-Sepharose and phenyl-Sepharose. Six grams of cell pellet yielded 140 mg of homogeneous TS. TS is a highly conserved enzyme, and several of the conserved amino acid residues that have been implicated in catalytic function are altered in L. lactis TS. By use of a 3-dimensional homology model, we have predicted covariant changes that might compensate for these differences. With the large amounts of L. lactis TS now available, studies can be pursued to understand the …


Investigations Of Peptide Hydration Using Nmr And Molecular Dynamics Simulations: A Study Of Effects Of Water On The Conformation And Dynamics Of Antamanide, Jeffrey Peng, Celia Schiffer, Ping Xu, Wilfred van Gunsteren, Richard Ernst 2011 Laboratorium fur Physikalische Chemie

Investigations Of Peptide Hydration Using Nmr And Molecular Dynamics Simulations: A Study Of Effects Of Water On The Conformation And Dynamics Of Antamanide, Jeffrey Peng, Celia Schiffer, Ping Xu, Wilfred Van Gunsteren, Richard Ernst

Celia A. Schiffer

The influence of water binding on the conformational dynamics of the cyclic decapeptide antamanide dissolved in the model lipophilic environment chloroform is investigated by NMR relaxation measurements. The water-peptide complex has a lifetime of 35 mgrs at 250 K, which is longer than typical lifetimes of water-peptide complexes reported in aqueous solution. In addition, there is a rapid intracomplex mobility that probably involves librational motions of the bound water or water molecules hopping between different binding sites. Water binding restricts the flexibility of antamanide. The experimental findings are compared with GROMOS molecular dynamics simulations of antamanide with up to eight …


Discovery Of Hiv-1 Protease Inhibitors With Picomolar Affinities Incorporating N-Aryl-Oxazolidinone-5-Carboxamides As Novel P2 Ligands, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Madhavi Nalam, Celia Schiffer, Tariq Rana 2011 University of Massachusetts Medical School

Discovery Of Hiv-1 Protease Inhibitors With Picomolar Affinities Incorporating N-Aryl-Oxazolidinone-5-Carboxamides As Novel P2 Ligands, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Madhavi Nalam, Celia Schiffer, Tariq Rana

Celia A. Schiffer

Here, we describe the design, synthesis, and biological evaluation of novel HIV-1 protease inhibitors incorporating N-phenyloxazolidinone-5-carboxamides into the (hydroxyethylamino)sulfonamide scaffold as P2 ligands. Series of inhibitors with variations at the P2 phenyloxazolidinone and the P2' phenylsulfonamide moieties were synthesized. Compounds with the (S)-enantiomer of substituted phenyloxazolidinones at P2 show highly potent inhibitory activities against HIV-1 protease. The inhibitors possessing 3-acetyl, 4-acetyl, and 3-trifluoromethyl groups at the phenyl ring of the oxazolidinone fragment are the most potent in each series, with K(i) values in the low picomolar (pM) range. The electron-donating groups 4-methoxy and 1,3-dioxolane are preferred at P2' phenyl ring, …


The Role Of Protein-Solvent Interactions In Protein Unfolding, Celia Schiffer, Volker Dötsch 2011 University of Massachusetts Medical School

The Role Of Protein-Solvent Interactions In Protein Unfolding, Celia Schiffer, Volker Dötsch

Celia A. Schiffer

Protein unfolding occurs when the balance of forces between the protein's interaction with itself and the protein's interaction with its environment is disrupted. The disruption of this balance of forces may be as simple as a perturbance of the normal water structure around the protein. A decrease in the normal water-water interaction will result in an increase in the relative interaction of water with the protein. An increase in the number of interactions between water and the protein may initiate a protein's unfolding. This model for protein unfolding is supported by a range of recent experimental and computational data.


Association Of A Novel Human Immunodeficiency Virus Type 1 Protease Substrate Cleft Mutation, L23i, With Protease Inhibitor Therapy And In Vitro Drug Resistance, Elizabeth Johnston, Mark Winters, Soo-Yon Rhee, Thomas Merigan, Celia Schiffer, Robert Shafer 2011 Stanford University

Association Of A Novel Human Immunodeficiency Virus Type 1 Protease Substrate Cleft Mutation, L23i, With Protease Inhibitor Therapy And In Vitro Drug Resistance, Elizabeth Johnston, Mark Winters, Soo-Yon Rhee, Thomas Merigan, Celia Schiffer, Robert Shafer

Celia A. Schiffer

We observed a previously uncharacterized mutation in the protease substrate cleft, L23I, in 31 of 4,303 persons undergoing human immunodeficiency virus type 1 genotypic resistance testing. In combination with V82I, L23I was associated with a sevenfold reduction in nelfinavir susceptibility and a decrease in replication capacity. In combination with other drug resistance mutations, L23I was associated with multidrug resistance and a compensatory increase in replication capacity.


Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer 2011 University of Massachusetts Medical School

Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer

Celia A. Schiffer

The selective pressure of the competitive protease inhibitors causes both HIV-1 protease and occasionally its substrates to evolve drug resistance. We hypothesize that this occurs particularly in substrates that protrude beyond the substrate envelope and contact residues that mutate in response to a particular protease inhibitor. To validate this hypothesis, we analyzed substrate and protease sequences for covariation. Using the chi2 test, we show a positive correlation between the nelfinavir-resistant D30N/N88D protease mutations and mutations at the p1-p6 cleavage site as compared to the other cleavage sites. Both nelfinavir and the substrate p1-p6 protrude beyond the substrate envelope and contact …


Reca Dimers Serve As A Functional Unit For Assembly Of Active Nucleoprotein Filaments, Anthony Forget, Michelle Kudron, Dharia McGrew, Melissa Calmann, Celia Schiffer, Kendall Knight 2011 University of Massachusetts Medical School

Reca Dimers Serve As A Functional Unit For Assembly Of Active Nucleoprotein Filaments, Anthony Forget, Michelle Kudron, Dharia Mcgrew, Melissa Calmann, Celia Schiffer, Kendall Knight

Celia A. Schiffer

All RecA-like recombinase enzymes catalyze DNA strand exchange as elongated filaments on DNA. Despite numerous biochemical and structural studies of RecA and the related Rad51 and RadA proteins, the unit oligomer(s) responsible for nucleoprotein filament assembly and coordinated filament activity remains undefined. We have created a RecA fused dimer protein and show that it maintains in vivo DNA repair and LexA co-protease activities, as well as in vitro ATPase and DNA strand exchange activities. Our results support the idea that dimeric RecA is an important functional unit both for assembly of nucleoprotein filaments and for their coordinated activity during the …


Substrate Shape Determines Specificity Of Recognition For Hiv-1 Protease: Analysis Of Crystal Structures Of Six Substrate Complexes, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer 2011 University of Massachusetts Medical School

Substrate Shape Determines Specificity Of Recognition For Hiv-1 Protease: Analysis Of Crystal Structures Of Six Substrate Complexes, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer

Celia A. Schiffer

The homodimeric HIV-1 protease is the target of some of the most effective antiviral AIDS therapy, as it facilitates viral maturation by cleaving ten asymmetric and nonhomologous sequences in the Gag and Pol polyproteins. Since the specificity of this enzyme is not easily determined from the sequences of these cleavage sites alone, we solved the crystal structures of complexes of an inactive variant (D25N) of HIV-1 protease with six peptides that correspond to the natural substrate cleavage sites. When the protease binds to its substrate and buries nearly 1000 A2 of surface area, the symmetry of the protease is broken, …


Rationale For More Diverse Inhibitors In Competition With Substrates In Hiv-1 Protease, Nevra Ozer, Celia Schiffer, Turkan Haliloglu 2011 Polymer Research Center

Rationale For More Diverse Inhibitors In Competition With Substrates In Hiv-1 Protease, Nevra Ozer, Celia Schiffer, Turkan Haliloglu

Celia A. Schiffer

The structural fluctuations of HIV-1 protease in interaction with its substrates versus inhibitors were analyzed using the anisotropic network model. The directions of fluctuations in the most cooperative functional modes differ mainly around the dynamically key regions, i.e., the hinge axes, which appear to be more flexible in substrate complexes. The flexibility of HIV-1 protease is likely optimized for the substrates' turnover, resulting in substrate complexes being dynamic. In contrast, in an inhibitor complex, the inhibitor should bind and lock down to inactivate the active site. Protease and ligands are not independent. Substrates are also more flexible than inhibitors and …


Digital Commons powered by bepress