Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

12,488 Full-Text Articles 26,267 Authors 1,658,542 Downloads 249 Institutions

All Articles in Biochemistry, Biophysics, and Structural Biology

Faceted Search

12,488 full-text articles. Page 427 of 429.

Incorporating Genomics And Bioinformatics Across The Life Sciences Curriculum, Jayna L. Ditty, Christopher A. Kvaal, Brad Goodner, Sharyn K. Freyermuth, Cheryl Bailey, Robert A. Britton, Stuart G. Gordon, Sabine Heinhorst, Kelynne Reed, Zhaohui Xu, Erin R. Sanders-Lorenz, Seth Axen, Edwin Kim, Mitrick Johns, Kathleen Scott, Cheryl A. Kerfeld 2010 University of St. Thomas

Incorporating Genomics And Bioinformatics Across The Life Sciences Curriculum, Jayna L. Ditty, Christopher A. Kvaal, Brad Goodner, Sharyn K. Freyermuth, Cheryl Bailey, Robert A. Britton, Stuart G. Gordon, Sabine Heinhorst, Kelynne Reed, Zhaohui Xu, Erin R. Sanders-Lorenz, Seth Axen, Edwin Kim, Mitrick Johns, Kathleen Scott, Cheryl A. Kerfeld

Biochemistry -- Faculty Publications

Undergraduate life sciences education needs an overhaul, as clearly described in the National Research Council of the National Academies’ publication BIO 2010: Transforming Undergraduate Education for Future Research Biologists. Among BIO 2010’s top recommendations is the need to involve students in working with real data and tools that reflect the nature of life sciences research in the 21st century [1]. Education research studies support the importance of utilizing primary literature, designing and implementing experiments, and analyzing results in the context of a bona fide scientific question [1–12] in cultivating the analytical skills necessary to become a scientist. Incorporating ...


Anti-Diabetic Potentials Of Phenolic Enriched Chilean Potato And Select Herbs Of Apiaceae And Lamiaceae Families, Fahad Saleem 2010 University of Massachusetts Amherst

Anti-Diabetic Potentials Of Phenolic Enriched Chilean Potato And Select Herbs Of Apiaceae And Lamiaceae Families, Fahad Saleem

Masters Theses 1911 - February 2014

The incidence of diabetes mellitus and cardiovascular diseases is increasing at a worrisome rate globally. Diabetes mellitus is known to occur due to high blood glucose levels, caused by defects in insulin levels. Adult on-set type II diabetes, which is closely associated with obesity, is reported to be 90-95% of all diabetic cases and linked to diet and lifestyle factors. A large population of the developed and developing countries is now being effected by this epidemic. Natural sources of phenolic antioxidants and inhibitors of digestive enzymes from food sources have potential for low cost dietary management of type II diabetes ...


Interconversion Of The Specificities Of Human Lysosomal Enzymes, Ivan B. Tomasic 2010 University of Massachusetts Amherst

Interconversion Of The Specificities Of Human Lysosomal Enzymes, Ivan B. Tomasic

Masters Theses 1911 - February 2014

Fabry disease (FD) is an X-linked recessive lysosomal storage disorder (LSD) known to affect approximately 1 in every 40,000 males, and a smaller number of females. FD results from a deficiency of functional α-galactosidase (α-GAL), which leads to the accumulation of terminally α-galactosylated substrates in the lysosome. The predominant treatment is Enzyme Replacement Therapy (ERT), requiring the regular infusion of recombinant human α-GAL. More than half of individuals receiving ERT experience a range of adverse infusion reactions, and it has been reported that as many as 88% of patients receiving ERT develop neutralizing IgG antibodies against the drug.

In ...


Quantitative Nuclear Proteomics Identifies Mtor Regulation Of Dna Damage Response, Sricharan Bandhakavi, Young-Mi Kim, Seung-Hyun Ro, Hongwei Xie, Getiria Onsongo, Chang-Bong Jun, Do-Hyung Kim, Timothy J. Griffin 2010 University of Minnesota

Quantitative Nuclear Proteomics Identifies Mtor Regulation Of Dna Damage Response, Sricharan Bandhakavi, Young-Mi Kim, Seung-Hyun Ro, Hongwei Xie, Getiria Onsongo, Chang-Bong Jun, Do-Hyung Kim, Timothy J. Griffin

Biochemistry -- Faculty Publications

Cellular nutritional and energy status regulates a wide range of nuclear processes important for cell growth, survival, and metabolic homeostasis. Mammalian target of rapamycin (mTOR) plays a key role in the cellular responses to nutrients. However, the nuclear processes governed by mTOR have not been clearly defined. Using isobaric peptide tagging coupled with linear ion trap mass spectrometry, we performed quantitative proteomics analysis to identify nuclear processes in human cells under control of mTOR. Within 3 h of inhibiting mTOR with rapamycin in HeLa cells, we observed downregulation of nuclear abundance of many proteins involved in translation and RNA modification ...


Epsvr And Epmeta: Prediction Of Antigenic Epitopes Using Support Vector Regression And Multiple Server Results, Shide Liang, Dandan Zheng, Daron M. Standley, Bo Yao, Martin Zacharias, Chi Zhang 2010 Jacobs University Bremen

Epsvr And Epmeta: Prediction Of Antigenic Epitopes Using Support Vector Regression And Multiple Server Results, Shide Liang, Dandan Zheng, Daron M. Standley, Bo Yao, Martin Zacharias, Chi Zhang

Faculty Publications in the Biological Sciences

Background: Accurate prediction of antigenic epitopes is important for immunologic research and medical applications, but it is still an open problem in bioinformatics. The case for discontinuous epitopes is even worse - currently there are only a few discontinuous epitope prediction servers available, though discontinuous peptides constitute the majority of all B-cell antigenic epitopes. The small number of structures for antigen-antibody complexes limits the development of reliable discontinuous epitope prediction methods and an unbiased benchmark to evaluate developed methods.

Results: In this work, we present two novel server applications for discontinuous epitope prediction: EPSVR and EPMeta, where EPMeta is a meta ...


Mzm1 Influences A Labile Pool Of Mitochondrial Zinc Important For Respiratory Function, Aaron Atkinson, Oleh Khalimonchuk, Pamela Smith, Hana Sabic, David Eide, Dennis R. Winge 2010 University of Utah Health Sciences

Mzm1 Influences A Labile Pool Of Mitochondrial Zinc Important For Respiratory Function, Aaron Atkinson, Oleh Khalimonchuk, Pamela Smith, Hana Sabic, David Eide, Dennis R. Winge

Biochemistry -- Faculty Publications

Zinc is essential for function of mitochondria as a cofactor for

several matrix zinc metalloproteins. We demonstrate that a

labile cationic zinc component of low molecular mass exists in

the yeast mitochondrial matrix. This zinc pool is homeostatically

regulated in response to the cellular zinc status. This pool

of zinc is functionally important because matrix targeting of a

cytosolic zinc-binding protein reduces the level of labile zinc

and interferes with mitochondrial respiratory function. We

identified a series of proteins that modulate the matrix zinc

pool, one of which is a novel conserved mitochondrial protein

designated Mzm1. Mutant mzm1∆ cells have ...


Identification And Characterization Of Small Compound Inhibitors Of Human Fatp2, Angel Sandoval, Aalap Chokshi, Elliot D. Jesch, Paul N. Black, Concetta C. DiRusso 2010 University of Nebraska-Lincoln

Identification And Characterization Of Small Compound Inhibitors Of Human Fatp2, Angel Sandoval, Aalap Chokshi, Elliot D. Jesch, Paul N. Black, Concetta C. Dirusso

Biochemistry -- Faculty Publications

Fatty acid transport proteins (FATPs) are bifunctional proteins, which transport long chain fatty acids into cells and activate very long chain fatty acids by esterification with coenzyme A. In an effort to understand the linkage between cellular fatty acid transport and the pathology associated with excessive accumulation of exogenous fatty acids, we targeted FATP-mediated fatty acid transport in a high throughput screen of more than 100,000 small diverse chemical compounds in yeast expressing human FATP2 (hsFATP2). Compounds were selected for their ability to depress the transport of the fluorescent long chain fatty acid analogue, C1-BODIPY-C12. Among ...


Formation Of The Redox Cofactor Centers During Cox1 Maturation In Yeast Cytochrome Oxidase, Oleh Khalimonchuk, Megan Bestwick, Brigitte Meunier, Talina C. Watts, Dennis R. Winge 2010 University of Nebraska-Lincoln

Formation Of The Redox Cofactor Centers During Cox1 Maturation In Yeast Cytochrome Oxidase, Oleh Khalimonchuk, Megan Bestwick, Brigitte Meunier, Talina C. Watts, Dennis R. Winge

Biochemistry -- Faculty Publications

The biogenesis of cytochrome c oxidase initiates with synthesis and maturation of the mitochondrionencoded Cox1 subunit prior to the addition of other subunits. Cox1 contains redox cofactors, including the low-spin heme a center and the heterobimetallic heme a3:CuB center. We sought to identify the step in the maturation of Cox1 in which the redox cofactor centers are assembled. Newly synthesized Cox1 is incorporated within one early assembly intermediate containing Mss51 in Saccharomyces cerevisiae. Subsequent Cox1 maturation involves the progression to downstream assembly intermediates involving Coa1 and Shy1. We show that the two heme a cofactor sites in ...


Evolution Of New Enzymatic Function By Structural Modulation Of Cysteine Reactivity In Pseudomonas Fluorescens Isocyanide Hydratase, Mahadevan Lakshminarasimhan, Peter Madzelan, Ruth Nan, Nicole Marie Milkovic, Mark A. Wilson 2010 University of Nebraska - Lincoln

Evolution Of New Enzymatic Function By Structural Modulation Of Cysteine Reactivity In Pseudomonas Fluorescens Isocyanide Hydratase, Mahadevan Lakshminarasimhan, Peter Madzelan, Ruth Nan, Nicole Marie Milkovic, Mark A. Wilson

Biochemistry -- Faculty Publications

Isocyanide (formerly isonitrile) hydratase (EC 4.2.1.103) is an enzyme of the DJ-1 superfamily that hydrates isocyanides to yield the corresponding N-formamide. In order to understand the structural basis for isocyanide hydratase (ICH) catalysis, we determined the crystal structures of wild-type and several site-directed mutants of Pseudomonas fluorescens ICH at resolutions ranging from 1.0 to 1.9 Å. We also developed a simple UV-visible spectrophotometric assay for ICH activity using 2-naphthyl isocyanide as a substrate. ICH contains a highly conserved cysteine residue (Cys101) that is required for catalysis and interacts with Asp17, Thr102, and an ordered ...


Regulation Of Sealing Ring Formation By L-Plastin And Cortactin In Osteoclasts, Tao Ma, Kavitha Sadashivalah, Nandakumar Madayiputhiya, Meenakshi A. Chellaia 2010 Dental School, University of Maryland

Regulation Of Sealing Ring Formation By L-Plastin And Cortactin In Osteoclasts, Tao Ma, Kavitha Sadashivalah, Nandakumar Madayiputhiya, Meenakshi A. Chellaia

Biochemistry -- Faculty Publications

The aim of this study is to identify the exact mechanism(s) by which cytoskeletal structures are modulated during bone resorption. In this study, we have shown the possible role of different actin-binding and signaling proteins in the regulation of sealing ring formation. Our analyses have demonstrated a significant increase in cortactin and a corresponding decrease in L-plastin protein levels in osteoclasts subjected to bone resorption for 18 h in the presence of RANKL, M-CSF, and native bone particles. Time-dependent changes in the localization of L-plastin (in actin aggregates) and cortactin (in the sealing ring) suggest that these proteins may ...


Structural Basis For Feedback And Pharmacological Inhibition Of Saccharomyces Cerevisiae Glutamate Cysteine Ligase, Ekaterina I Biterova, Joseph J. Barycki 2010 University of Nebraska - Lincoln

Structural Basis For Feedback And Pharmacological Inhibition Of Saccharomyces Cerevisiae Glutamate Cysteine Ligase, Ekaterina I Biterova, Joseph J. Barycki

Biochemistry -- Faculty Publications

Structural characterization of glutamate cysteine ligase (GCL), the enzyme that catalyzes the initial, rate-limiting step in glutathione biosynthesis, has revealed many of the molecular details of substrate recognition. To further delineate the mechanistic details of this critical enzyme, we have determined the structures of two inhibited forms of Saccharomyces cerevisiae GCL (ScGCL), which shares significant sequence identity with the human enzyme. In vivo, GCL activity is feedback regulated by glutathione. Examination of the structure of ScGCL-glutathione complex (2.5 A ; R = 19.9%, Rfree = 25.1%) indicates that the inhibitor occupies both the glutamate- and the presumed cysteine- binding ...


Functional Hybrid Rubisco Enzymes With Plant Small Subunits And Algal Large Subunits Engineered Rbcs Cdna For Expression In Chlamydomonas, Todor Genkov, Moritz Meyer, Howard Griffiths, Robert J. Spreitzer 2010 University of Nebraska-Lincoln

Functional Hybrid Rubisco Enzymes With Plant Small Subunits And Algal Large Subunits Engineered Rbcs Cdna For Expression In Chlamydomonas, Todor Genkov, Moritz Meyer, Howard Griffiths, Robert J. Spreitzer

Biochemistry -- Faculty Publications

There has been much interest in the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) as a target for engineering an increase in net CO2 fixation in photosynthesis. Improvements in the enzyme would lead to an increase in the production of food, fiber, and renewable energy. Although the large subunit contains the active site, a family of rbcS nuclear genes encodes the Rubisco small subunits, which can also influence the carboxylation catalytic efficiency and CO2/O2 specificity of the enzyme. To further define the role of the small subunit in Rubisco function, small subunits from spinach ...


Cug Start Codon Generates Thioredoxin/Glutathione Reductase Isoforms In Mouse Testes, Maxim Gerashchenko, Dan Su, Vadim Gladyshev 2010 University of Nebraska-Lincoln

Cug Start Codon Generates Thioredoxin/Glutathione Reductase Isoforms In Mouse Testes, Maxim Gerashchenko, Dan Su, Vadim Gladyshev

Biochemistry -- Faculty Publications

Mammalian cytosolic and mitochondrial thioredoxin reductases are essential selenocysteine-containing enzymes that control thioredoxin functions. Thioredoxin/glutathione reductase (TGR) is a third member of this enzyme family. It has an additional glutaredoxin domain and shows highest expression in testes. Herein, we found that human and several other mammalian TGR genes lack any AUG codons that could function in translation initiation. Although mouse and rat TGRs have such codons, we detected protein sequences upstream of them by immunoblot assays and direct proteomic analyses. Further gene engineering and expression analyses demonstrated that a CUG codon, located upstream of the sequences previously thought to ...


Structure Of The Proline Utilization A Proline Dehydrogenase Domain Inactivated By N-Propargylglycine Provides Insight Into Conformational Changes Induced By Substrate Binding And Flavin Reduction, Dhiraj Srivastava, Weidong Zhu, William H. Johnson Jr., Christian P. Whitman, Donald F. Becker, John J. Tanner 2010 University of Missouri-Columbia

Structure Of The Proline Utilization A Proline Dehydrogenase Domain Inactivated By N-Propargylglycine Provides Insight Into Conformational Changes Induced By Substrate Binding And Flavin Reduction, Dhiraj Srivastava, Weidong Zhu, William H. Johnson Jr., Christian P. Whitman, Donald F. Becker, John J. Tanner

Biochemistry -- Faculty Publications

Proline utilization A (PutA) from Escherichia coli is a flavoprotein that has mutually exclusive roles as a transcriptional repressor of the put regulon and a membrane-associated enzyme that catalyzes the oxidation of proline to glutamate. Previous studies have shown that the binding of proline in the proline dehydrogenase (PRODH) active site and subsequent reduction of the FAD trigger global conformational changes that enhance PutA-membrane affinity. These events cause PutA to switch from its repressor to enzymatic role, but the mechanism by which this signal is propagated from the active site to the distal membrane-binding domain is largely unknown. Here, it ...


Very-Long-Chain Fatty Acids Are Involved In Polar Auxin Transport And Developmental Patterning In Arabidopsis, Françoise Roudier, Lionel Gissot, Frédéric Beaudoin, Richard Haslam, Louise V. Michaelson, Jessica Marion, Diana Molino, Amparo Lima, Liên Bach, Halima Morin, Frédérique Tellier, Jean-Christophe Palauqui, Yannick Bellec, Charlotte Renne, Martine Miquel, Marco DaCosta, Julien Vignard, Christine Rochat, Jonathan E. Markham, Patrick Moreau, Jonathan Napier, Jean-Denis Faure 2010 Institut de Biologie de l’Ecole Normale Supérieure

Very-Long-Chain Fatty Acids Are Involved In Polar Auxin Transport And Developmental Patterning In Arabidopsis, Françoise Roudier, Lionel Gissot, Frédéric Beaudoin, Richard Haslam, Louise V. Michaelson, Jessica Marion, Diana Molino, Amparo Lima, Liên Bach, Halima Morin, Frédérique Tellier, Jean-Christophe Palauqui, Yannick Bellec, Charlotte Renne, Martine Miquel, Marco Dacosta, Julien Vignard, Christine Rochat, Jonathan E. Markham, Patrick Moreau, Jonathan Napier, Jean-Denis Faure

Biochemistry -- Faculty Publications

Very-long-chain fatty acids (VLCFAs) are essential for many aspects of plant development and necessary for the synthesis of seed storage triacylglycerols, epicuticular waxes, and sphingolipids. Identification of the acetyl-CoA carboxylase PASTICCINO3 and the 3-hydroxy acyl-CoA dehydratase PASTICCINO2 revealed that VLCFAs are important for cell proliferation and tissue patterning. Here, we show that the immunophilin PASTICCINO1 (PAS1) is also required for VLCFA synthesis. Impairment of PAS1 function results in reduction of VLCFA levels that particularly affects the composition of sphingolipids, known to be important for cell polarity in animals. Moreover, PAS1 associates with several enzymes of the VLCFA elongase complex ...


Analysis Of Leigh Syndrome Mutations In The Yeast Surf1 Homolog Reveals A New Member Of The Cytochrome Oxidase Assembly Factor Family, Megan Bestwick, Mi-Young Jeong, Oleh Khalimonchuk, Hyung Kim, Dennis R. Winge 2010 University of Utah Health Sciences Center

Analysis Of Leigh Syndrome Mutations In The Yeast Surf1 Homolog Reveals A New Member Of The Cytochrome Oxidase Assembly Factor Family, Megan Bestwick, Mi-Young Jeong, Oleh Khalimonchuk, Hyung Kim, Dennis R. Winge

Biochemistry -- Faculty Publications

Three missense SURF1 mutations identified in patients with Leigh syndrome (LS) were evaluated in the yeast homolog Shy1 protein. Introduction of two of the Leigh mutations, F249T and Y344D, in Shy1 failed to significantly attenuate the function of Shy1 in cytochrome c oxidase (CcO) biogenesis as seen with the human mutations. In contrast, a G137E substitution in Shy1 results in a nonfunctional protein conferring a CcO deficiency. The G137E Shy1 mutant phenocopied shy1 Δ cells in impaired Cox1 hemylation and low mitochondrial copper. A genetic screen for allele-specific suppressors of the G137E ...


The Role Of Coa2 In Hemylation Of Yeast Cox1 Revealed By Its Genetic Interaction With Cox10, Megan Bestwick, Oleh Khalimonchuk, Fabien Pierrel, Dennis R. Winge 2010 University of Utah Health Sciences Center

The Role Of Coa2 In Hemylation Of Yeast Cox1 Revealed By Its Genetic Interaction With Cox10, Megan Bestwick, Oleh Khalimonchuk, Fabien Pierrel, Dennis R. Winge

Biochemistry -- Faculty Publications

Saccharomyces cerevisiae cells lacking the cytochrome c oxidase (CcO) assembly factor Coa2 are impaired in Cox1 maturation and exhibit a rapid degradation of newly synthesized Cox1. The respiratory deficiency of coa2 Δ cells is suppressed either by the presence of a mutant allele of the Cox10 farnesyl transferase involved in heme a biosynthesis or through impaired proteolysis by the disruption of the mitochondrial Oma1 protease. Cox10 with an N196K substitution functions as a robust gain-of-function suppressor of the respiratory deficiency of coa2 Δ cells but lacks suppressor activity for two other CcO assembly mutant strains, the coa1 Δ and shy1 ...


Purification And Properties Of Amycolatopsis Mediterranei Dsm 43304 Lipase And Its Potential In Flavour Ester Synthesis, Dharmendra Dheeman, Gary Henehan, Jesus Maria Frias 2010 Technological University Dublin

Purification And Properties Of Amycolatopsis Mediterranei Dsm 43304 Lipase And Its Potential In Flavour Ester Synthesis, Dharmendra Dheeman, Gary Henehan, Jesus Maria Frias

Articles

An extracellular thermostable lipase from Amycolatopsis mediterranei DSM 43304 has been purified to homogeneity using ammonium sulphate precipitation followed by anion exchange chromatography and hydrophobic interaction chromatography. This protocol resulted in 398 fold purification with 36% final recovery. The purified A. mediterranei DSM 43304 lipase (AML) has an apparent molecular mass of 33 kDa. The N-terminal sequence, AANPYERGPDPTTASIEATR, showed highest similarity to a lipase from Streptomyces exfoliatus. The values of and for p-nitrophenyl palmitate (p-NPP) under optimal temperature (60°C) and pH (8.0) conditions were 0.10 ± 0.01 mM and 2.53 ± 0.06 mmol/minmg ...


N-Glycans On The Link Domain Of Human Hare/Stabilin-2 Are Needed For Hyaluronan Binding To Purified Ecto-Domain, But Not For Cellular Endocytosis Of Hyaluronan, Ed Harris, Simon Parry, Mark Sutton-Smith, Madhu S. Pandey, Maria Panico, Howard R. Morris, Stuart M. Haslam, Anne Dell, Paul H. Weigel 2010 University of Nebraska - Lincoln

N-Glycans On The Link Domain Of Human Hare/Stabilin-2 Are Needed For Hyaluronan Binding To Purified Ecto-Domain, But Not For Cellular Endocytosis Of Hyaluronan, Ed Harris, Simon Parry, Mark Sutton-Smith, Madhu S. Pandey, Maria Panico, Howard R. Morris, Stuart M. Haslam, Anne Dell, Paul H. Weigel

Biochemistry -- Faculty Publications

The hyaluronic acid receptor for endocytosis (HARE)/Stabilin- 2 is the primary systemic scavenger receptor for 13 ligands including hyaluronan (HA), heparin and chondroitin sulfates. Most ligand-binding sites are within the 190 kDa isoform, which contains ~25 kDa of N-glycans and is the C-terminal half of the full-length 315 kDa HARE. Glycoproteomic analyses of purified recombinant human 190-HARE ecto-domain identified a diverse population of glycans at 10 of 17 consensus sites. The most diversity (and the only sialylated structures) occurred at N2280, within the HA-binding Link domain. To determine if these N-glycans are required for HA binding ...


Udp-Glucose Dehydrogenase As A Novel Field-Specific Candidate Biomarker Of Prostate Cancer, Dali Huang, George P. Casale, Jun Tian, Subodh M. Lele, Vladimir M. Pisarev, Melanie A. Simpson, George P. Hemstreet III 2010 University of Nebraska Medical Center, Omaha, NE

Udp-Glucose Dehydrogenase As A Novel Field-Specific Candidate Biomarker Of Prostate Cancer, Dali Huang, George P. Casale, Jun Tian, Subodh M. Lele, Vladimir M. Pisarev, Melanie A. Simpson, George P. Hemstreet Iii

Biochemistry -- Faculty Publications

Uridine diphosphate (UDP)-glucose dehydrogenase (UGDH) catalyzes the oxidation of UDP-glucose to yield UDP-glucuronic acid, a precursor for synthesis of glycosaminoglycans and proteoglycans that promote aggressive prostate cancer (PC) progression. The purpose of our study was to determine if the UGDH expression in normal appearing acini (NAA) from cancerous glands is a candidate biomarker for PC field disease/effect assayed by quantitative fluorescence imaging analysis (QFIA). A polyclonal antibody to UGDH was titrated to saturation binding and fluorescent microscopic images acquired from fixed, paraffin-embedded tissue slices were quantitatively analyzed. Specificity of the assay was confirmed by Western blot analysis and ...


Digital Commons powered by bepress