Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

3,859 Full-Text Articles 7,785 Authors 439,699 Downloads 176 Institutions

All Articles in Molecular Biology

Faceted Search

3,859 full-text articles. Page 4 of 136.

Armms As A Versatile Platform For Intracellular Delivery Of Macromolecules, Qiyu Wang, Jiujiu Yu, Tatenda Kadungure, Joseph Beyene, Hong Zhang, Quan Lu 2018 Harvard T.H. Chan School of Public Health

Armms As A Versatile Platform For Intracellular Delivery Of Macromolecules, Qiyu Wang, Jiujiu Yu, Tatenda Kadungure, Joseph Beyene, Hong Zhang, Quan Lu

Pediatric Publications and Presentations

Majority of disease-modifying therapeutic targets are restricted to the intracellular space and are therefore not druggable using existing biologic modalities. The ability to efficiently deliver macromolecules inside target cells or tissues would greatly expand the current landscape of therapeutic targets for future generations of biologic drugs, but remains challenging. Here we report the use of extracellular vesicles, known as arrestin domain containing protein 1 [ARRDC1]-mediated microvesicles (ARMMs), for packaging and intracellular delivery of a myriad of macromolecules, including the tumor suppressor p53 protein, RNAs, and the genome-editing CRISPR-Cas9/guide RNA complex. We demonstrate selective recruitment of these macromolecules into ...


Investigating The Genetic Structure Of Northern Long-Eared Bats In Nebraska, Jonathan Korbitz 2018 University of Nebraska at Omaha

Investigating The Genetic Structure Of Northern Long-Eared Bats In Nebraska, Jonathan Korbitz

Student Research and Creative Activity Fair

Abstract:

The northern long-eared bat (Myotis septentrionalis) is one of many species of hibernating bats in North America affected by a recently discovered fungal disease called white-nose syndrome (WNS). Northern long-eared bats seem to be extremely susceptible to the disease with mass fatalities occurring among populations in eastern North America. Researchers in the eastern distribution of this species have performed mtDNA analysis to identify the population structure of the species; however, genetic analysis has yet to be done in western parts of its distribution. The goal of this study is to create a better understanding of the genetic makeup of ...


Transcriptome Profiling Of Neovascularized Corneas Reveals Mir-204 As A Multi-Target Biotherapy Deliverable By Raavs, Yi Lu, Phillip W. L. Tai, Jianzhong Ai, Dominic J. Gessler, Qin Su, Xieyi Yao, Qiang Zheng, Phillip D. Zamore, Xun Xu, Guangping Gao 2018 University of Massachusetts Medical School

Transcriptome Profiling Of Neovascularized Corneas Reveals Mir-204 As A Multi-Target Biotherapy Deliverable By Raavs, Yi Lu, Phillip W. L. Tai, Jianzhong Ai, Dominic J. Gessler, Qin Su, Xieyi Yao, Qiang Zheng, Phillip D. Zamore, Xun Xu, Guangping Gao

Open Access Articles

Corneal neovascularization (NV) is the major sight-threatening pathology caused by angiogenic stimuli. Current drugs that directly target pro-angiogenic factors to inhibit or reverse the disease require multiple rounds of administration and have limited efficacies. Here, we identify potential anti-angiogenic corneal microRNAs (miRNAs) and demonstrate a framework that employs discovered miRNAs as biotherapies deliverable by recombinant adeno-associated viruses (rAAVs). By querying differentially expressed miRNAs in neovascularized mouse corneas induced by alkali burn, we have revealed 39 miRNAs that are predicted to target more than 5,500 differentially expressed corneal mRNAs. Among these, we selected miR-204 and assessed its efficacy and therapeutic ...


Evolution Of Echovirus 11 In A Chronically Infected Immunodeficient Patient., Majid Laassri, Tatiana Zagorodnyaya, Sharon Hassin-Baer, Rachel Handsher, Danit Sofer, Merav Weil, Konstantinos Karagiannis, Vahan Simonyan, Konstantin Chumakov, Lester Shulman 2018 George Washington University

Evolution Of Echovirus 11 In A Chronically Infected Immunodeficient Patient., Majid Laassri, Tatiana Zagorodnyaya, Sharon Hassin-Baer, Rachel Handsher, Danit Sofer, Merav Weil, Konstantinos Karagiannis, Vahan Simonyan, Konstantin Chumakov, Lester Shulman

Biochemistry and Molecular Medicine Faculty Publications

Deep sequencing was used to determine complete nucleotide sequences of echovirus 11 (EV11) strains isolated from a chronically infected patient with CVID as well as from cases of acute enterovirus infection. Phylogenetic analysis showed that EV11 strains that circulated in Israel in 1980-90s could be divided into four clades. EV11 strains isolated from a chronically infected individual belonged to one of the four clades and over a period of 4 years accumulated mutations at a relatively constant rate. Extrapolation of mutations accumulation curve into the past suggested that the individual was infected with circulating EV11 in the first half of ...


Evolution Of Echovirus 11 In A Chronically Infected Immunodeficient Patient., Majid Laassri, Tatiana Zagorodnyaya, Sharon Hassin-Baer, Rachel Handsher, Danit Sofer, Merav Weil, Konstantinos Karagiannis, Vahan Simonyan, Konstantin Chumakov, Lester Shulman 2018 George Washington University

Evolution Of Echovirus 11 In A Chronically Infected Immunodeficient Patient., Majid Laassri, Tatiana Zagorodnyaya, Sharon Hassin-Baer, Rachel Handsher, Danit Sofer, Merav Weil, Konstantinos Karagiannis, Vahan Simonyan, Konstantin Chumakov, Lester Shulman

Biochemistry and Molecular Medicine Faculty Publications

Deep sequencing was used to determine complete nucleotide sequences of echovirus 11 (EV11) strains isolated from a chronically infected patient with CVID as well as from cases of acute enterovirus infection. Phylogenetic analysis showed that EV11 strains that circulated in Israel in 1980-90s could be divided into four clades. EV11 strains isolated from a chronically infected individual belonged to one of the four clades and over a period of 4 years accumulated mutations at a relatively constant rate. Extrapolation of mutations accumulation curve into the past suggested that the individual was infected with circulating EV11 in the first half of ...


Molecular Mechanisms Of Cell Death: Recommendations Of The Nomenclature Committee On Cell Death 2018, Lorenzo Galluzzi, Eric H. Baehrecke, Francis Ka-Ming Chan, Guido Kroemer 2018 Weill Cornell Medical College

Molecular Mechanisms Of Cell Death: Recommendations Of The Nomenclature Committee On Cell Death 2018, Lorenzo Galluzzi, Eric H. Baehrecke, Francis Ka-Ming Chan, Guido Kroemer

Open Access Articles

Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell ...


Characterization Of The Roles Of Muscle-Synthesized Brain-Derived Neurotrophic Factor And Presynaptic Tyrosine Receptor Kinase B In Motor Neuron Axonal Transport, Luke A. VanOsdol 2018 Northern Michigan University

Characterization Of The Roles Of Muscle-Synthesized Brain-Derived Neurotrophic Factor And Presynaptic Tyrosine Receptor Kinase B In Motor Neuron Axonal Transport, Luke A. Vanosdol

All NMU Master's Theses

Brain-derived neurotrophic factor (BDNF) is a small, diffusible protein essential for the development and function of neurons. It is synthesized by many types of tissue, including muscle. BDNF actions are mediated via binding to its receptor, tyrosine receptor kinase B (TrkB). The BDNF-TrkB complex is endocytosed into a specialized vesicle, which induces downstream signaling cascades locally in the dendrites, or, more often, is delivered to the cell soma via retrograde axonal transport, where it modulates gene expression. BDNF activation of TrkB is critical for the initiation of axonal transport, and this cellular process relies on the interaction of numerous adaptor ...


Distinct Adipocyte Progenitor Cells Are Associated With Regional Phenotypes Of Perivascular Aortic Fat In Mice, Khanh-Van T. Tran, Timothy P. Fitzgibbons, So Yun Min, Tiffany DeSouza, Silvia Corvera 2018 University of Massachusetts Medical School

Distinct Adipocyte Progenitor Cells Are Associated With Regional Phenotypes Of Perivascular Aortic Fat In Mice, Khanh-Van T. Tran, Timothy P. Fitzgibbons, So Yun Min, Tiffany Desouza, Silvia Corvera

University of Massachusetts Medical School Faculty Publications

OBJECTIVE: Perivascular adipose tissue depots around the aorta are regionally distinct and have specific functional properties. Thoracic aorta perivascular adipose tissue (tPVAT) expresses higher levels of thermogenic genes and lower levels of inflammatory genes than abdominal aorta perivascular adipose tissue (aPVAT). It is not known whether this distinction is due to the in-vivo functional environment or to cell-autonomous traits that persist outside the in-vivo setting. In this study, we asked whether the progenitor cells in tPVAT and aPVAT have cell-autonomous traits that lead to formation of regionally distinct PVAT.

METHODS: We performed microarray analysis of thoracic and abdominal peri-aortic adipose ...


Seekdeep: Single-Base Resolution De Novo Clustering For Amplicon Deep Sequencing, Nicholas J. Hathaway, Christian M. Parobek, Jonathan J. Juliano, Jeffrey A. Bailey 2018 University of Massachusetts Medical School

Seekdeep: Single-Base Resolution De Novo Clustering For Amplicon Deep Sequencing, Nicholas J. Hathaway, Christian M. Parobek, Jonathan J. Juliano, Jeffrey A. Bailey

Open Access Articles

PCR amplicon deep sequencing continues to transform the investigation of genetic diversity in viral, bacterial, and eukaryotic populations. In eukaryotic populations such as Plasmodium falciparum infections, it is important to discriminate sequences differing by a single nucleotide polymorphism. In bacterial populations, single-base resolution can provide improved resolution towards species and strains. Here, we introduce the SeekDeep suite built around the qluster algorithm, which is capable of accurately building de novo clusters representing true, biological local haplotypes differing by just a single base. It outperforms current software, particularly at low frequencies and at low input read depths, whether resolving single-base differences ...


Two Distinct Domains Contribute To The Substrate Acyl Chain Length Selectivity Of Plant Acyl-Acp Thioesterase, Fuyuan Jing, Le Zhao, Marna D. Yandeau-Nelson, Basil J. Nikolau 2018 Iowa State University

Two Distinct Domains Contribute To The Substrate Acyl Chain Length Selectivity Of Plant Acyl-Acp Thioesterase, Fuyuan Jing, Le Zhao, Marna D. Yandeau-Nelson, Basil J. Nikolau

Genetics, Development and Cell Biology Publications

The substrate specificity of acyl-ACP thioesterase (TE) plays an essential role in controlling the fatty acid profile produced by type II fatty acid synthases. Here we identify two groups of residues that synergistically determine different substrate specificities of two acyl-ACP TEs from Cuphea viscosissima (CvFatB1 and CvFatB2). One group (V194, V217, N223, R226, R227, and I268 in CvFatB2) is critical in determining the structure and depth of a hydrophobic cavity in the N-terminal hotdog domain that binds the substrate’s acyl moiety. The other group (255-RKLSKI-260 and 285-RKLPKL-289 in CvFatB2) defines positively charged surface patches that may facilitate binding of ...


Functional And Structural Mimicry Of A-Kinase Anchoring Proteins By Human Adenovirus E1a, Cason R. King 2018 The University of Western Ontario

Functional And Structural Mimicry Of A-Kinase Anchoring Proteins By Human Adenovirus E1a, Cason R. King

Electronic Thesis and Dissertation Repository

As an obligate intracellular parasite, human adenovirus (HAdV) must utilize host factors for survival and replication. Early during infection, its multifunctional E1A protein interacts with an impressive range of cellular target proteins to exert control over the cellular environment. Through these virus-host interactions, E1A massively reprograms both viral and cellular transcription to activate the other HAdV genes, downregulate the host’s immune response, and induce the cell cycle. Consequently, E1A converts the infected cell into a compliant state more amenable for HAdV replication, resulting from its numerous protein-protein interactions. I sought to examine E1A’s interaction with cellular protein kinase ...


Herpes Icp8 Protein Stimulates Homologous Recombination In Human Cells, Melvys Valledor, Richard S. Myers, Paul C. Schiller 2018 University of Massachusetts Medical School

Herpes Icp8 Protein Stimulates Homologous Recombination In Human Cells, Melvys Valledor, Richard S. Myers, Paul C. Schiller

University of Massachusetts Medical School Faculty Publications

Recombineering has transformed functional genomic analysis. Genome modification by recombineering using the phage lambda Red SynExo homologous recombination proteins Beta in Escherichia coli has approached 100% efficiency. While highly efficient in E. coli, recombineering using the Red SynExo in other organisms declines in efficiency roughly correlating with phylogenetic distance from E. coli. SynExo recombinases are common to double-stranded DNA viruses infecting a variety of organisms, including humans. Human Herpes virus Type 1 (HHV1) encodes a SynExo comprised of ICP8 synaptase and UL12 exonuclease. In a previous study, the Herpes SynExo was reconstituted in vitro and shown to catalyze a model ...


Upr(Mt) Regulation And Output: A Stress Response Mediated By Mitochondrial-Nuclear Communication, Andrew Melber, Cole M. Haynes 2018 University of Massachusetts Medical School

Upr(Mt) Regulation And Output: A Stress Response Mediated By Mitochondrial-Nuclear Communication, Andrew Melber, Cole M. Haynes

University of Massachusetts Medical School Faculty Publications

The mitochondrial network is not only required for the production of energy, essential cofactors and amino acids, but also serves as a signaling hub for innate immune and apoptotic pathways. Multiple mechanisms have evolved to identify and combat mitochondrial dysfunction to maintain the health of the organism. One such pathway is the mitochondrial unfolded protein response (UPR(mt)), which is regulated by the mitochondrial import efficiency of the transcription factor ATFS-1 in C. elegans and potentially orthologous transcription factors in mammals (ATF4, ATF5, CHOP). Upon mitochondrial dysfunction, import of ATFS-1 into mitochondria is reduced, allowing it to be trafficked to ...


Comparison Of Partially And Fully Chemically-Modified Sirna In Conjugate-Mediated Delivery In Vivo, Matthew R. Hassler, Anton A. Turanov, Julia F. Alterman, Reka A. Haraszti, Andrew H. Coles, Maire F. Osborn, Dimas Echeverria, Mehran Nikan, William E. Salomon, Loic Roux, Bruno M. D. C. Godinho, Sarah M. Davis, David V. Morrissey, Phillip D. Zamore, S. Ananth Karumanchi, Melissa J. Moore, Neil Aronin, Anastasia Khvorova 2018 University of Massachusetts Medical School

Comparison Of Partially And Fully Chemically-Modified Sirna In Conjugate-Mediated Delivery In Vivo, Matthew R. Hassler, Anton A. Turanov, Julia F. Alterman, Reka A. Haraszti, Andrew H. Coles, Maire F. Osborn, Dimas Echeverria, Mehran Nikan, William E. Salomon, Loic Roux, Bruno M. D. C. Godinho, Sarah M. Davis, David V. Morrissey, Phillip D. Zamore, S. Ananth Karumanchi, Melissa J. Moore, Neil Aronin, Anastasia Khvorova

Open Access Articles

Small interfering RNA (siRNA)-based drugs require chemical modifications or formulation to promote stability, minimize innate immunity, and enable delivery to target tissues. Partially modified siRNAs (up to 70% of the nucleotides) provide significant stabilization in vitro and are commercially available; thus are commonly used to evaluate efficacy of bio-conjugates for in vivo delivery. In contrast, most clinically-advanced non-formulated compounds, using conjugation as a delivery strategy, are fully chemically modified (100% of nucleotides). Here, we compare partially and fully chemically modified siRNAs in conjugate mediated delivery. We show that fully modified siRNAs are retained at 100x greater levels in various ...


Regulation Of Atm And Atr By Smarcal1 And Brg1, Ramesh Sethy, Radhakrishnan Rakesh, Ketki Patne, Vijendra Arya, Tapan Sharma, Dominic T. Haokip, Reshma Kumari, Rohini Muthuswami 2018 Jawaharlal Nehru University

Regulation Of Atm And Atr By Smarcal1 And Brg1, Ramesh Sethy, Radhakrishnan Rakesh, Ketki Patne, Vijendra Arya, Tapan Sharma, Dominic T. Haokip, Reshma Kumari, Rohini Muthuswami

University of Massachusetts Medical School Faculty Publications

The G2/M checkpoint is activated on DNA damage by the ATM and ATR kinases that are regulated by post-translational modifications. In this paper, the transcriptional co-regulation of ATM and ATR by SMARCAL1 and BRG1, both members of the ATP-dependent chromatin remodeling protein family, is described. SMARCAL1 and BRG1 co-localize on the promoters of ATM and ATR; downregulation of SMARCAL1/BRG1 results in transcriptional repression of ATM/ATR and therefore, overriding of the G2/M checkpoint leading to mitotic abnormalities. On doxorubicin-induced DNA damage, SMARCAL1 and BRG1 are upregulated and in turn, upregulate the expression of ATM/ATR. Phosphorylation of ...


Cbx7 Regulates Stem Cell-Like Properties Of Gastric Cancer Cells Via P16 And Akt-Nf-Κb-Mir-21 Pathways., Su-Jie Ni, Li-Qin Zhao, Xiao-Feng Wang, Zhen-Hua Wu, Rui-Xi Hua, Chun-Hua Wan, Jie-Yun Zhang, Xiao-Wei Zhang, Ming-Zhu Huang, Lu Gan, Hua-Lin Sun, Goberdhan P Dimri, Wei-Jian Guo 2018 George Washington University

Cbx7 Regulates Stem Cell-Like Properties Of Gastric Cancer Cells Via P16 And Akt-Nf-Κb-Mir-21 Pathways., Su-Jie Ni, Li-Qin Zhao, Xiao-Feng Wang, Zhen-Hua Wu, Rui-Xi Hua, Chun-Hua Wan, Jie-Yun Zhang, Xiao-Wei Zhang, Ming-Zhu Huang, Lu Gan, Hua-Lin Sun, Goberdhan P Dimri, Wei-Jian Guo

Biochemistry and Molecular Medicine Faculty Publications

BACKGROUND: Chromobox protein homolog 7 (CBX7), a member of the polycomb group (PcG) family of proteins, is involved in the regulation of cell proliferation and cancer progression. PcG family members, such as BMI, Mel-18, and EZH2, are integral constituents of the polycomb repressive complexes (PRCs) and have been known to regulate cancer stem cell (CSC) phenotype. However, the role of other PRCs' constituents such as CBX7 in the regulation of CSC phenotype remains largely elusive. This study was to investigate the role of CBX7 in regulating stem cell-like properties of gastric cancer and the underlying mechanisms.

METHODS: Firstly, the role ...


The Trim-Nhl Protein Nhl-2 Is A Novel Co-Factor Of The Csr-1 And Hrde-1 22g-Rna Pathways, Peter R. Boag, Gregory M. Davis, Shikui Tu, Rhys N. Colson, Joshua W. T. Anderson, Menachem J. Gunzburg, Michelle A. Francisco, Debashish Ray, Tuhin Maity, Monica Z. Wu, Quaid D. Morris, Timothy R. Hughes, Jacqueline A. Wilce, University of Toronto, Zhiping Weng 2018 Monash University

The Trim-Nhl Protein Nhl-2 Is A Novel Co-Factor Of The Csr-1 And Hrde-1 22g-Rna Pathways, Peter R. Boag, Gregory M. Davis, Shikui Tu, Rhys N. Colson, Joshua W. T. Anderson, Menachem J. Gunzburg, Michelle A. Francisco, Debashish Ray, Tuhin Maity, Monica Z. Wu, Quaid D. Morris, Timothy R. Hughes, Jacqueline A. Wilce, University Of Toronto, Zhiping Weng

University of Massachusetts Medical School Faculty Publications

Proper regulation of germline gene expression is essential for fertility and maintaining species integrity. In the C. elegans germline, a diverse repertoire of regulatory pathways promote the expression of endogenous germline genes and limit the expression of deleterious transcripts to maintain genome homeostasis. Here we show that the conserved TRIM-NHL protein, NHL-2, plays an essential role in the C. elegans germline, modulating germline chromatin and meiotic chromosome organization. We uncover a role for NHL-2 as a co-factor in both positively (CSR-1) and negatively (HRDE-1) acting germline 22G-small RNA pathways and the somatic nuclear RNAi pathway. Furthermore, we demonstrate that NHL-2 ...


C-Berst: Defining Subnuclear Proteomic Landscapes At Genomic Elements With Dcas9-Apex2, Xin D. Gao, Li-Chun Tu, Aamir Mir, Tomas Rodriguez, Yue-He Ding, John D. Leszyk, Job Dekker, Scott A. Shaffer, Lihua Julie Zhu, Scot A. Wolfe, Erik J. Sontheimer 2018 University of Massachusetts Medical School

C-Berst: Defining Subnuclear Proteomic Landscapes At Genomic Elements With Dcas9-Apex2, Xin D. Gao, Li-Chun Tu, Aamir Mir, Tomas Rodriguez, Yue-He Ding, John D. Leszyk, Job Dekker, Scott A. Shaffer, Lihua Julie Zhu, Scot A. Wolfe, Erik J. Sontheimer

University of Massachusetts Medical School Faculty Publications

Mapping proteomic composition at distinct genomic loci and subnuclear landmarks in living cells has been a long-standing challenge. Here we report that dCas9-APEX2 Biotinylation at genomic Elements by Restricted Spatial Tagging (C-BERST) allows the rapid, unbiased mapping of proteomes near defined genomic loci, as demonstrated for telomeres and centromeres. By combining the spatially restricted enzymatic tagging enabled by APEX2 with programmable DNA targeting by dCas9, C-BERST has successfully identified nearly 50% of known telomere-associated factors and many known centromere-associated factors. We also identified and validated SLX4IP and RPA3 as telomeric factors, confirming C-BERST ...


A Long Cytoplasmic Loop Governs The Sensitivity Of The Anti-Viral Host Protein Serinc5 To Hiv-1 Nef, Weiwei Dai, Yoshiko Usami, Yuanfei Wu, Heinrich G. Gottlinger 2018 University of Massachusetts Medical School

A Long Cytoplasmic Loop Governs The Sensitivity Of The Anti-Viral Host Protein Serinc5 To Hiv-1 Nef, Weiwei Dai, Yoshiko Usami, Yuanfei Wu, Heinrich G. Gottlinger

Open Access Articles

We recently identified the multipass transmembrane protein SERINC5 as an antiviral protein that can potently inhibit HIV-1 infectivity and is counteracted by HIV-1 Nef. We now report that the anti-HIV-1 activity, but not the sensitivity to Nef, is conserved among vertebrate SERINC5 proteins. However, a Nef-resistant SERINC5 became Nef sensitive when its intracellular loop 4 (ICL4) was replaced by that of Nef-sensitive human SERINC5. Conversely, human SERINC5 became resistant to Nef when its ICL4 was replaced by that of a Nef-resistant SERINC5. In general, ICL4 regions from SERINCs that exhibited resistance to a given Nef conferred resistance to the same ...


Elimination Of Pcr Duplicates In Rna-Seq And Small Rna-Seq Using Unique Molecular Identifiers, Yu Fu, Pei-Hsuan Wu, Timothy J. Beane, Phillip D. Zamore, Zhiping Weng 2018 Boston University

Elimination Of Pcr Duplicates In Rna-Seq And Small Rna-Seq Using Unique Molecular Identifiers, Yu Fu, Pei-Hsuan Wu, Timothy J. Beane, Phillip D. Zamore, Zhiping Weng

University of Massachusetts Medical School Faculty Publications

RNA-seq and small RNA-seq are powerful, quantitative tools to study gene regulation and function. Common high-throughput sequencing methods rely on polymerase chain reaction (PCR) to expand the starting material, but not every molecule amplifies equally, causing some to be overrepresented. Unique molecular identifiers (UMIs) can be used to distinguish undesirable PCR duplicates derived from a single molecule and identical but biologically meaningful reads from different molecules. We have incorporated UMIs into RNA-seq and small RNA-seq protocols and developed tools to analyze the resulting data. Our UMIs contain stretches of random nucleotides whose lengths sufficiently capture diverse molecule species in both ...


Digital Commons powered by bepress