Open Access. Powered by Scholars. Published by Universities.®

Biophysics Commons

Open Access. Powered by Scholars. Published by Universities.®

948 Full-Text Articles 1,577 Authors 208,296 Downloads 125 Institutions

All Articles in Biophysics

Faceted Search

948 full-text articles. Page 5 of 43.

Utilizing Computational Methods To Study The Biomolecules, Wenhan Guo 2022 University of Texas at El Paso

Utilizing Computational Methods To Study The Biomolecules, Wenhan Guo

Open Access Theses & Dissertations

COVID-19 is increasingly affecting human health and global economy. Understanding the fundamental mechanisms of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is highly demanded to develop treatments for COVID-19. SARS-CoV and SARS-CoV-2 share 92.06% identity in their N protein RBDs' sequences, which results in very similar structures. However, the SARS-CoV-2 is more easily to spread. Utilizing multi-scale computational approaches, this work studied the fundamental mechanisms of the nucleocapsid (N) proteins of SARS-CoV and SARS-CoV-2, including their stabilities and binding strengths with RNAs at different pH values. Electrostatic potential on the surfaces of N proteins show that both the N proteins …


Symmetry-Inspired Analysis Of Biological Networks, Ian Leifer 2022 The Graduate Center, City University of New York

Symmetry-Inspired Analysis Of Biological Networks, Ian Leifer

Dissertations, Theses, and Capstone Projects

The description of a complex system like gene regulation of a cell or a brain of an animal in terms of the dynamics of each individual element is an insurmountable task due to the complexity of interactions and the scores of associated parameters. Recent decades brought about the description of these systems that employs network models. In such models the entire system is represented by a graph encapsulating a set of independently functioning objects and their interactions. This creates a level of abstraction that makes the analysis of such large scale system possible. Common practice is to draw conclusions about …


Modelling Juxtacrine Mediated Tumor-Fibroblast Interactions In Three-Dimensional Co-Cultures Of Pancreatic Ductal Adenocarcinoma, Eric Struth 2022 University of Massachusetts Boston

Modelling Juxtacrine Mediated Tumor-Fibroblast Interactions In Three-Dimensional Co-Cultures Of Pancreatic Ductal Adenocarcinoma, Eric Struth

Graduate Masters Theses

The tumor-microenvironment is a rich and complex milieu of mutated cancer cells and otherwise healthy cells engaged in dynamic interactions. Fibroblasts, the most abundant cellular component of human connective tissues, are implicated in a tumor promoting process known as stromal crosstalk. This stromal crosstalk is driven by numerous signaling pathways including contact mediated juxtacrine signaling and directed long distance paracrine signaling. Recent research suggests these signaling pathways are particularly important for two distinct types of fibroblasts. Mayofibroblastic cancer associated fibroblasts (MyCAFs) are associated with tumor suppression and shown to rely primarily on juxtacrine signaling, while inflammatory cancer associated fibroblasts (iCAFs) …


The Hydrophobic Residues In Amino Terminal Domains Of Cx46 And Cx50 Are Important For Their Gap Junction Channel Ion Permeation And Gating, Roa'a Jaradat 2022 The University of Western Ontario

The Hydrophobic Residues In Amino Terminal Domains Of Cx46 And Cx50 Are Important For Their Gap Junction Channel Ion Permeation And Gating, Roa'a Jaradat

Electronic Thesis and Dissertation Repository

Connexins are ubiquitous transmembrane proteins that assemble to form intercellular channels, called gap junctions (GJs). The amino terminal (NT) domain and residues within this domain have been shown to be important for both Vj-gating and single channel conductance (γj) of several GJs including Cx46 and Cx50. High-resolution structures of Cx46 and Cx50 GJs were recently resolved showing that NT domain folds into the inner pore where hydrophobic residues are packed against M1/2 domains stabilizing open-state conformation. We studied functional properties of GJs formed by several point variants at NT (Cx46 L10I, N13E, A14V, Q15N and Cx50 …


Mechanisms Of Voltage-Gated Sodium Channel (Nav1.5) Regulation By Intracellular Fgfs, Paweorn Angsutararux 2022 Washington University in St. Louis

Mechanisms Of Voltage-Gated Sodium Channel (Nav1.5) Regulation By Intracellular Fgfs, Paweorn Angsutararux

McKelvey School of Engineering Theses & Dissertations

Voltage-gated sodium channels (NaV) conduct the inward current responsible for the initiation and propagation of the electrical signals in myocytes and neurons, known as action potentials (AP). Precise regulation of cardiac NaV1.5 opening and closing is essential for maintaining a normal heart beat. A disruption of NaV1.5 function, especially of its inactivation after opening, results in inherited cardiac arrhythmias such as Long QT Type 3 (LQT3) syndrome. This pathology is caused by an increase in the late INa that enters myocytes later in the AP and prolongs its duration. Late INa is also enhanced in acquired diseases such as heart …


Self-Organization Of Microtubule And Associated Protein Map65, Sumon Sahu 2022 Syracuse University

Self-Organization Of Microtubule And Associated Protein Map65, Sumon Sahu

Dissertations - ALL

One of the most fascinating micron-scale structures in the biological world is the cell cytoskele- ton, with numerous components of different sizes, shapes, and geometries working together. How the local interactions of these macromolecules and polymers in nano-scale help self- organize into this higher-order micron-scale structure remains an open question in the field of biophysics. In this thesis, via a minimal two-protein in vitro system containing cytoskeletal fiber microtubule and associated protein MAP65, I try to address self-organization through passive entropic force mechanisms. I use techniques like protein purification, light microscopy, and image analysis to quantify my results. First, I …


Extracellular Mechanotransduction In Marfan Syndrome: An Equivalence Principle, Stephen Haller 2022 University of Nebraska Medical Center

Extracellular Mechanotransduction In Marfan Syndrome: An Equivalence Principle, Stephen Haller

Theses & Dissertations

Biological tissues continuously experience mechanical stress and have evolved sophisticated mechanisms to sense mechanical stimuli. While traditional viewpoints regard cells as the ultimate sensors and processors of mechanical information, compounding evidence demonstrates that extracellular matrix, the structural component of tissues, also exhibits evolved molecular responses to force. This led us to propose a new paradigm termed extracellular mechanotransduction, in which matrix orchestrates a complementary form of force integration distinct from traditional cellular and extracellular viewpoints. We thus propose that force-sensitive signaling mechanisms evolved within the extracellular space to help cells maintain mechanical homeostasis in tissues. In this dissertation, we apply …


Crowd Control: Regulating The Spatial Organization Of Biopolymers And Gene Expression By Macromolecular Crowding, Gaurav Chauhan 2022 University of Tennessee, Knoxville

Crowd Control: Regulating The Spatial Organization Of Biopolymers And Gene Expression By Macromolecular Crowding, Gaurav Chauhan

Doctoral Dissertations

The intracellular environment is crowded with macromolecules that can occupy a significant fraction of the cellular volume. This can give rise to attractive depletion interactions that impact the conformations and interactions of biopolymers, as well as their interactions with confining surfaces. We used computer simulations to study the effects of crowding on biologically-inspired models of polymers. We showed that crowding can lead to attractive interactions between two flexible ring polymers, and we further characterized the adsorption of both flexible and semiflexible polymers onto confining surfaces. These results indicate that crowding-induced depletion interactions could play a role in the spatial organization …


Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton III 2022 Clemson University

Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii

All Dissertations

Proteins, RNA, and DNA serve as the primary sub-cellular machinery that give rise to the necessary functions of life. The long-standing paradigm has been that the structures of biomolecules, or the arrangement of the subunits that make up a biomolecule, determine biological function. However, biomolecules are not static objects. Instead, they often undergo structural rearrangements that are crucial to enabling and regulating their functions. In my thesis I present several studies of the interplay between the structures, dynamics, and functions of biomolecules that combine experimental fluorescence spectroscopy and computational methods to probe these systems at the single-molecule level. In particular, …


Developing And Applying Computational Algorithms To Reveal Health-Related Biomolecular Interactions, Yixin Xie 2022 The University of Texas at El Paso

Developing And Applying Computational Algorithms To Reveal Health-Related Biomolecular Interactions, Yixin Xie

Open Access Theses & Dissertations

Computational biology is an interdisciplinary area that applies computational approaches in biological big data, including protein amino acid sequences, genetic sequences, etc., which is widely used to analyze protein-protein interactions, make predictions in drug discovery, develop vaccines, etc. Popular methods include mathematical modeling, molecular dynamics simulations, data science mythology, etc. With the help of computational algorithms and applications, drug development is much faster than traditional processes, as it reduces risks early on in a drug discovery process and helps researchers select target candidates that have the highest potential for success. In my doctoral research, I applied multi-scale computational approaches to …


The Electrostatic Features Of Dengue Virus Capsid Assembly, Alan Eduardo Lopez Hernandez 2022 The University of Texas at El Paso

The Electrostatic Features Of Dengue Virus Capsid Assembly, Alan Eduardo Lopez Hernandez

Open Access Theses & Dissertations

Dengue virus causes serious diseases and considerable deaths each year all around the globe. Dengue virus undergoes assembly in a capsid, matures and becomes viral. Revealing mechanisms of the viral capsid protein may lead to the discovery of novel drugs that prevent this assembly to happen and stop the virus from spreading. Here I present a computational work which is focused on the stability and assembly of the dengue viral capsid. The E and M proteins conform a heterotetramer, which consists of two copies of E and M proteins. The heterotetramers form a highly ordered capsid. In the electrostatic analysis …


Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar 2022 Clemson University

Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar

All Dissertations

An Optical tweezer is a tightly focused laser beam that applies and senses precise and localized optical force to a dielectric microsphere and offers a unique and effective tool for manipulating the single cell or cell components, including nucleotides and dynein motor proteins. Here, I used highly stabilized optomechanical components and ultra-sensitive detection modules to significantly improve the measurement capabilities over a wide range of temporal and spatial scales. I combined the optical tweezer-based force spectroscopy technique with fluorescence microscopy to develop an integrated high-resolution force-fluorescence system capable of measuring displacements at sub-nanometer, forces at sub-piconewton over a temporal range …


Modulation Of Kras Structure And Dynamics By Kras Ubiquitination And Membrane Depolarization, Vinay Nair 2022 The Texas Medical Center Library

Modulation Of Kras Structure And Dynamics By Kras Ubiquitination And Membrane Depolarization, Vinay Nair

Dissertations & Theses (Open Access)

KRAS, a 21 kDa small GTPase protein, functions as a molecular switch playing a key role in regulating cell proliferation. Dysregulation of KRAS signaling by oncogenic mutations leads to uncontrolled cell proliferation, a hallmark of cancer cells. Attempts to therapeutically target oncogenic KRAS have led to limited success resulting in a need to identify new mechanisms to targeting KRAS. The interaction of KRAS with its regulators, effectors, and the membrane present one such avenue. In this study, we investigated how post-translational covalent and environmental modifications could modulate these interactions of KRAS. Using computational molecular dynamics simulations, nuclear magnetic resonance spectroscopy …


Improving The Biocompatibility Of The Bio-Inorganic Interface For Enhanced Photosystem I-Based Biophotovoltaic Device Performance, Alexandra H. Teodor 2022 University of Tennessee, Knoxville

Improving The Biocompatibility Of The Bio-Inorganic Interface For Enhanced Photosystem I-Based Biophotovoltaic Device Performance, Alexandra H. Teodor

Doctoral Dissertations

The world’s energy demands are projected to increase by nearly 50% by the year 2040, and consumption of carbon-based fuels continues to release greenhouse gases such as carbon dioxide and methane into the atmosphere. This has been causally linked with climate change and increased extreme weather events, which has been further linked to adverse health outcomes and negative effects on biodiversity, food security, and increased disease transmission. Clearly, there is a need for a sustainable, carbon-free, and cost-effective method of energy production to meet growing energy production demands. The sun irradiates Earth’s surface annually with ~80,000 terawatts (TW), making solar …


Ongoing Calculus In The Cerebral Cortex, Luke Long 2022 University of Arkansas, Fayetteville

Ongoing Calculus In The Cerebral Cortex, Luke Long

Physics Undergraduate Honors Theses

Various modes of neuronal computations have long been theorized to be possible based on the structure and geometry of the brain. These computations also seem necessary for many of the integral functions of the brain, like information processing and regulatory processes in the body. However, experimental data directly supporting these claims have been rare.

In this study, data collected in mice from a large number of neurons over a long period of time provided the opportunity to search for some of these computations, specifically change detection and squaring calculations. Using Matlab, the goal of this analysis was to find statistically …


Defining Interactions Between Deformable Dna Origami And Lipid Bilayers Through Molecular Dynamics Simulation, Zachary A. Loyd 2022 University of Tennessee, Knoxville

Defining Interactions Between Deformable Dna Origami And Lipid Bilayers Through Molecular Dynamics Simulation, Zachary A. Loyd

Chancellor’s Honors Program Projects

No abstract provided.


Computational Investigations Into Binding Dynamics Of Tau Protein Antibodies: Using Machine Learning And Biophysical Models To Build A Better Reality, Katherine Lee 2022 University of Connecticut

Computational Investigations Into Binding Dynamics Of Tau Protein Antibodies: Using Machine Learning And Biophysical Models To Build A Better Reality, Katherine Lee

University Scholar Projects

Misregulation of post-translational modifications of microtubule-associated protein tau is implicated in several neurodegenerative diseases including Alzheimer’s disease. Hyperphosphorylation of tau promotes aggregation of tau monomers into filaments which are common in tau-associated pathologies. Therefore, tau is a promising target for therapeutics and diagnostics. Recently, high-affinity, high-specificity single-chain variable fragment (scFv) antibodies against pThr-231 tau were generated and the most promising variant (scFv 3.24) displayed 20-fold increased binding affinity to pThr-231 tau compared to the wild-type. The scFv 3.24 variant contained five point mutations, and intriguingly none were in the tau binding site. The increased affinity was hypothesized to occur due …


Foldamers Reveal And Validate Therapeutic Targets Associated With Toxic Α-Synuclein Self-Assembly, Jemil Ahmed, Tessa C. Fitch, Courtney M. Donnelly, Johnson A. Joseph, Tyler D. Ball, Mikaela M. Bassil, Ahyun Son, Chen Zhang, Aurélie Ledreux, Scott Horowitz, Yan Qin, Daniel Paredes, Sunil Kumar 2022 University of Denver

Foldamers Reveal And Validate Therapeutic Targets Associated With Toxic Α-Synuclein Self-Assembly, Jemil Ahmed, Tessa C. Fitch, Courtney M. Donnelly, Johnson A. Joseph, Tyler D. Ball, Mikaela M. Bassil, Ahyun Son, Chen Zhang, Aurélie Ledreux, Scott Horowitz, Yan Qin, Daniel Paredes, Sunil Kumar

Chemistry and Biochemistry: Faculty Scholarship

Parkinson’s disease (PD) is a progressive neurodegenerative disorder for which there is no successful prevention or intervention. The pathological hallmark for PD involves the self-assembly of functional Alpha-Synuclein (αS) into non-functional amyloid structures. One of the potential therapeutic interventions against PD is the effective inhibition of αS aggregation. However, the bottleneck towards achieving this goal is the identification of αS domains/sequences that are essential for aggregation. Using a protein mimetic approach, we have identified αS sequences-based targets that are essential for aggregation and will have significant therapeutic implications. An extensive array of in vitro, ex vivo, and in vivo assays …


Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen 2022 College of Saint Benedict/Saint John's University

Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen

CSB/SJU Distinguished Thesis

Severe acute respiratory syndrome (SARS-CoV-2) led to the COVID-19 global pandemic, with over 460 million cases of infection and over 6 million deaths since the start of the pandemic. SARS-CoV-2 is a retrovirus that utilizes a main protease (Mpro). Mpro is a catalytic cys/his protease. Several treatments were proposed to stop the pandemic including repurposing drugs to inhibit the Mpro. Another retrovirus that uses a protease is human immunodeficiency virus (HIV-1) which has been a global epidemic for 40 years and is a devastating disease that attacks the immune system. HIV-1 has infected 79.5 million people and has killed an …


The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen 2022 College of Saint Benedict/Saint John's University

The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen

CSB/SJU Distinguished Thesis

An unexpected outbreak of SARS-CoV-2 caused a worldwide pandemic in 2020. Many repurposed drugs were tested, but there are currently only three FDA approved antivirals (Merck’s antiviral Molnupiravir, Pfizer’s antiviral Paxlovid, and Remdisivir).1 Most of the antiviral drugs tested SARS-CoV-2 main protease and RNA-dependent RNA polymerase. However, it is important to explore different drug targets of SARS-CoV-2 to prepare for the virus mutations of the future. This research looks at an alternative approach in which SARSCoV- 2 Open Reading Frame 8 (ORF8), which has been shown to be a rapidly evolving hypervariable gene, was chosen to be the protein of …


Digital Commons powered by bepress