Open Access. Powered by Scholars. Published by Universities.®

Biophysics Commons

Open Access. Powered by Scholars. Published by Universities.®

948 Full-Text Articles 1,577 Authors 208,296 Downloads 125 Institutions

All Articles in Biophysics

Faceted Search

948 full-text articles. Page 36 of 43.

Septin Assemblies Form By Diffusion-Driven Annealing On Membranes, Andrew A. Bridges, Huaiying Zhang, Shalin B. Mehta, Patricia Occhipinti, Tomomi Tani, Amy S. Gladfelter 2014 Dartmouth College

Septin Assemblies Form By Diffusion-Driven Annealing On Membranes, Andrew A. Bridges, Huaiying Zhang, Shalin B. Mehta, Patricia Occhipinti, Tomomi Tani, Amy S. Gladfelter

Dartmouth Scholarship

Septins assemble into filaments and higher-order structures that act as scaffolds for diverse cell functions including cytokinesis, cell polarity, and membrane remodeling. Despite their conserved role in cell organization, little is known about how septin filaments elongate and are knitted together into higher-order assemblies. Using fluorescence correlation spectroscopy, we determined that cytosolic septins are in small complexes, suggesting that septin filaments are not formed in the cytosol. When the plasma membrane of live cells is monitored by total internal reflection fluorescence microscopy, we see that septin complexes of variable size diffuse in two dimensions. Diffusing septin complexes collide and make …


Conformational Features Of The Human U2-U6 Snrna Complex, Ravichandra Bachu 2014 Graduate Center, City University of New York

Conformational Features Of The Human U2-U6 Snrna Complex, Ravichandra Bachu

Dissertations, Theses, and Capstone Projects

The splicing of precursor messenger (pre-m) RNA, during which noncoding intervening sequences are excised and flanking coding regions ligated, is an integral reaction of gene expression. In eukaryotes, it is carried out by a dynamic RNA-protein complex called the spliceosome, in which five small nuclear (sn) RNA components are actively involved in recognition and chemical aspects of the process. A complex formed between U2 and U6 snRNAs is implicated in the chemistry of pre-mRNA splicing. The catalytic activity of the U2-U6 snRNA complex is dependent on the presence of Mg2+ ions, and the complex has been shown to have several …


An Experimental Investigation Into The Mechanisms Of Bacterial Evolution, Zhenmao Wan 2014 Graduate Center, City University of New York

An Experimental Investigation Into The Mechanisms Of Bacterial Evolution, Zhenmao Wan

Dissertations, Theses, and Capstone Projects

This thesis studies the two fundamental mechanisms of bacterial evolution — horizontal gene transfer and spontaneous mutation, in the bacterium Escherichia coli through novel experimental assays and mathematical simulations. First, I will develop a growth assay utilizing the quantitative polymerase chain reaction (qPCR) to provide real-time enumeration of genetic marker abundance within bacterial populations. Second, I will focus on horizontal gene transfer in E. coli occurring through a process called conjugation. By fitting the qPCR data to a resource limited, logistic growth model, I will obtain estimated values of several key parameters governing the dynamics of DNA transfer through conjugation …


Computational Insights Into The Oxygen Evolving Complex Of Photosystem Ιι, Muhamed Amin 2014 Graduate Center, City University of New York

Computational Insights Into The Oxygen Evolving Complex Of Photosystem Ιι, Muhamed Amin

Dissertations, Theses, and Capstone Projects

The Oxygen Evolving Complex (OEC) of Photosystem II (PSII) is a unique Mn4O5Ca2+ cluster that catalyzes the photoactivated water splitting reaction. The OEC is a model system for bio-inspired artificial systems to use solar energy to pull electrons from water to produce fuel. The OEC goes through a cycle of 5 S states storing 4 holes, via electron transfer to P680+, the primary electron donor in PSII to generate a high valence S4 state that oxidizes water. The key questions are what controls the order of oxidation and deprotonation of the OEC complex and how does the PSII protein modulate …


Measuring Radiation Exposure In Human Blood Using Gene Expression, Krystal Naranjo, Melissa Bentley, Harsha Konery, Matthew Coleman 2014 Wasco High School

Measuring Radiation Exposure In Human Blood Using Gene Expression, Krystal Naranjo, Melissa Bentley, Harsha Konery, Matthew Coleman

STAR Program Research Presentations

Mammalian cells are known to express genes that are associated with repairing damaged DNA. The transcript CDKN1A is one of several cell cycle regulator genes expressed in response to cell damage by ionizing radiation (IR). In this study, male and female lymphocytes; previously exposed ex vivo to IR, were used to demonstrate linear gene expression responses that may vary between genders. We used qRT-PCR to generate response curves for CDKN1A. No differences were identified for the endogenous control gene GAPDH. CDKN1A expression demonstrated average fold changes well above three fold for three of the four healthy patient donors at 24 …


A Theoretical Study Of Interaction Of Nanoparticles With Biomolecule, Chunhui Liu 2014 Michigan Technological University

A Theoretical Study Of Interaction Of Nanoparticles With Biomolecule, Chunhui Liu

Dissertations, Master's Theses and Master's Reports - Open

Many types of materials at nanoscale are currently being used in everyday life. The production and use of such products based on engineered nanomaterials have raised concerns of the possible risks and hazards associated with these nanomaterials. In order to evaluate and gain a better understanding of their effects on living organisms, we have performed first-principles quantum mechanical calculations and molecular dynamics simulations. Specifically, we will investigate the interaction of nanomaterials including semiconducting quantum dots and metallic nanoparticles with various biological molecules, such as dopamine, DNA nucleobases and lipid membranes.

Firstly, interactions of semiconducting CdSe/CdS quantum dots (QDs) with the …


Cellular Regulation Of Extension And Retraction Of Pseudopod-Like Blebs Produced By Nanosecond Pulsed Electric Field, Mikhail A. Rassokhin, Andrei G. Pakhomov 2014 Old Dominion University

Cellular Regulation Of Extension And Retraction Of Pseudopod-Like Blebs Produced By Nanosecond Pulsed Electric Field, Mikhail A. Rassokhin, Andrei G. Pakhomov

Bioelectrics Publications

Recently we described a new phenomenon of anodotropic pseudopod-like blebbing in U937 cells exposed to nanosecond pulsed electric field (nsPEF). In Ca2+ -free buffer such exposure initiates formation of pseudopod-like blebs (PLBs), protrusive cylindrical cell extensions that are distinct from apoptotic and necrotic blebs. PLBs nucleate predominantly on anode-facing cell pole and extend toward anode during nsPEF exposure. Bleb extension depends on actin polymerization and availability of actin monomers. Inhibition of intracellular Ca2+ , cell contractility, and RhoA produced no effect on PLB initiation. Meanwhile, inhibition of WASP by wiskostatin causes dose-dependent suppression of PLB growth. Soon after …


Molecular Mechanisms Of Neuropilin-Ligand Binding, Matthew W. Parker 2014 University of Kentucky

Molecular Mechanisms Of Neuropilin-Ligand Binding, Matthew W. Parker

Theses and Dissertations--Molecular and Cellular Biochemistry

Neuropilin (Nrp) is an essential cell surface receptor with dual functionality in the cardiovascular and nervous systems. The first identified Nrp-ligand family was the Semaphorin-3 (Sema3) family of axon repulsion molecules. Subsequently, Nrp was found to serve as a receptor for the vascular endothelial growth factor (VEGF) family of pro-angiogenic cytokines. In addition to its physiological role, VEGF signaling via Nrp directly contributes to cancer stemness, growth, and metastasis. Thus, the Nrp/VEGF signaling axis is a promising anti-cancer therapeutic target. Interestingly, it has recently been shown that Sema3 and VEGF are functionally opposed to one another, with Sema3 possessing potent …


Hiv-1 Rna Dimerization At Single Molecule Level, Hansini R. Mundigala 2014 Wayne State University

Hiv-1 Rna Dimerization At Single Molecule Level, Hansini R. Mundigala

Wayne State University Dissertations

The Dimerization Initiation Sequence (DIS) is a conserved hairpin-loop motif on the 5' UTR of the HIV-1 genome. It plays an important role in genome dimerization through formation of a "kissing complex" intermediate between two homologous DIS sequences. This bimolecular kissing complex ultimately leads to the formation of an extended RNA duplex. Understanding the kinetics of this interaction is key to exploiting DIS as a possible drug target against HIV. We wish to report a novel study that makes an important contribution to understanding the dimerization mechanism of HIV-1 RNA in vitro. Our work has employed single-molecule fluorescence resonance energy …


Characterization Of Initial Iron Binding Location And The Structure/Iron Binding Site On S.Cerevisiae Isu And On D.Melanogaster Frataxin, Andria V. Rodrigues 2014 Wayne State University

Characterization Of Initial Iron Binding Location And The Structure/Iron Binding Site On S.Cerevisiae Isu And On D.Melanogaster Frataxin, Andria V. Rodrigues

Wayne State University Dissertations

Iron-induced free radical damage has been implicated in the pathology of diseases of iron overload such as Friedreich's Ataxia, a genetic disorder characterized by an accumulation of iron in actively metabolizing tissues ultimately leading to cardio- and neuro- degeneration and cell death. It is caused by an inability to synthesize the mitochondrial protein, frataxin. Frataxin has been shown by numerous groups to be a part of the iron-sulfur cluster (ISC) multicomplex, where it functions in the capacity of a potential iron provider and an allosteric modulator of both the cysteine desulfurase and scaffold protein ISU. My research has been focused …


The Nh2-Hypervariable Region Modulates The Binding Affinity Of Troponin T For Tropomyosin, Chinthaka Kaushalya Amarasinghe 2014 Wayne State University

The Nh2-Hypervariable Region Modulates The Binding Affinity Of Troponin T For Tropomyosin, Chinthaka Kaushalya Amarasinghe

Wayne State University Theses

The troponin complex plays a central role in the allosteric function of sarcomeric thin filaments by enacting conformational changes during the Ca2+-regulated contraction and relaxation of striated muscle. The troponin subunit T (TnT) has two binding sites for tropomyosin (Tm) and is responsible for anchoring the troponin complex to the thin filament. Although the C-terminal and middle regions of the TnT polypeptide chain are highly conserved among the three muscle type isoforms, the hypervariable N-terminal region has evolutionarily diverged significantly among isoforms. Previous studies have shown that the N-terminal variable region fine-tunes Ca2+ regulation of muscle contractility via modulation of …


Enzyme Entrapment In Polyaniline Films Observed Via Florescence Anisotropy And Antiquenching, Louis R. Nemzer, Marissa McCaffrey, Arthur J. Epstein 2014 Nova Southeastern University

Enzyme Entrapment In Polyaniline Films Observed Via Florescence Anisotropy And Antiquenching, Louis R. Nemzer, Marissa Mccaffrey, Arthur J. Epstein

Louis R Nemzer

The facile entrapment of oxidoreductase enzymes within polyaniline polymer films by inducing hydrophobic collapse using phosphate buffered saline (PBS) has been shown to be a cost-effective method for fabricating organic biosensors. Here, we use fluorescence anisotropy measurements to verify enzyme immobilization and subsequent electron donation to the polymer matrix, both prerequisites for an effective biosensor. Specifically, we measure a three order of magnitude decrease in the ratio of the fluorescence to rotational lifetimes. In addition, the observed fluorescence antiquenching supports the previously proposed model that the polymer chain assumes a severely coiled conformation when exposed to PBS. These results help …


Furthering Our Understanding And Assessing The Effectiveness Of Scaling Patterns And Controls Of Land-Atmosphere Carbon Exchange In A Shrubland Of The Chihuahuan Desert With Novel Cyberinfrastructure, Aline Jaimes 2014 University of Texas at El Paso

Furthering Our Understanding And Assessing The Effectiveness Of Scaling Patterns And Controls Of Land-Atmosphere Carbon Exchange In A Shrubland Of The Chihuahuan Desert With Novel Cyberinfrastructure, Aline Jaimes

Open Access Theses & Dissertations

Over the last century, arid and semiarid regions have undergone intense desertification and in many regions, vegetation has shifted from grassland to shrubland dominated ecosystems. This land cover change has important implications for how desert ecosystems function - especially with regards to land-atmosphere exchange of carbon, water, and energy. Although the extent of desertified landscapes is expected to expand over the next 30 to 40 years, there is a relatively poor understanding of how this state transition will impact ecosystem function and feedbacks to other components of the earth system. Key to addressing this challenge is an improved understanding of …


Single-Molecule Analysis Of Alzheimer's Β-Peptide Oligomer Disassembly At Physiological Concentration, Chen Chen 2014 University of Kentucky

Single-Molecule Analysis Of Alzheimer's Β-Peptide Oligomer Disassembly At Physiological Concentration, Chen Chen

Theses and Dissertations--Chemistry

The diffusible soluble oligomeric amyloid β-peptide (Aβ) has been identified as a toxic agent in Alzheimer’s disease that can cause synaptic dysfunction and memory loss, indicating its role as potential therapeutic targets for AD treatment. Recently an oligomer-specific sandwich biotin-avidin interaction based assay identified the Aβ oligomer dissociation potency of a series of dihydroxybenzoic acid (DHBA) isomers. Because the sandwich assay is an ensemble method providing limited size information, fluorescence correlation spectroscopy (FCS) was employed to provide single molecule resolution of the disassembly mechanism.

Using FCS coupled with atomic force microscopy, we investigated the size distribution of fluorescein labeled synthetic …


Disassembly Of Actin Structures By Nanosecond Pulsed Electric Field Is A Downstream Effect Of Cell Swelling, Andrei G. Pakhomov, Shu Xiao, Olga N. Pakhomova, Iurii Semenov, Marjorie A. Kuipers, Bennett L. Ibey 2014 Old Dominion University

Disassembly Of Actin Structures By Nanosecond Pulsed Electric Field Is A Downstream Effect Of Cell Swelling, Andrei G. Pakhomov, Shu Xiao, Olga N. Pakhomova, Iurii Semenov, Marjorie A. Kuipers, Bennett L. Ibey

Bioelectrics Publications

Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PRO-1 dye uptake, gradual cell rounding and swelling. Concurrently, bright actin features were replaced by dimmer and uniform fluorescence of diffuse actin. To block the …


Dielectric Characterization Of Coastal Cartilage Chondrocytes, Michael W. Stacey, Ahmet C. Sabuncu, Ali Beskok 2014 Old Dominion University

Dielectric Characterization Of Coastal Cartilage Chondrocytes, Michael W. Stacey, Ahmet C. Sabuncu, Ali Beskok

Bioelectrics Publications

BACKGROUND: Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enable the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy.

METHODS: Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are …


Bipolar Nanosecond Electric Pulses Are Less Efficient At Electropermeabilization And Killing Cells Than Monopolar Pulses, Bennett L. Ibey, Olga N. Pakhomova, Caleb C. Roth, Shu Xiao, Karl Schoenbach, Andrei G. Pakhomov 2014 Old Dominion University

Bipolar Nanosecond Electric Pulses Are Less Efficient At Electropermeabilization And Killing Cells Than Monopolar Pulses, Bennett L. Ibey, Olga N. Pakhomova, Caleb C. Roth, Shu Xiao, Karl Schoenbach, Andrei G. Pakhomov

Bioelectrics Publications

Multiple studies have shown that bipolar (BP) electric pulses in the microsecond range are more effective at permeabilizing cells while maintaining similar cell survival rates as compared to monopolar (MP) pulse equivalents. In this paper, we investigated whether the same advantage existed for BP nanosecond-pulsed electric fields (nsPEF) as compared to MP nsPEF. To study permeabilization effectiveness, MP or BP pulses were delivered to single Chinese hamster ovary (CHO) cells and the response of three dyes, Calcium Green-1, propidium iodide (PI), and FM1-43, was measured by confocal microscopy. Results show that BP pulses were less effective at increasing intracellular calcium …


Microfluidic Electrical Sorting Of Particles Based On Shape In A Spiral Microchannel, John DuBose, Xinyu Lu, Saurin Patel, Shizhi Qian, Sang Woo Joo 2014 Old Dominion University

Microfluidic Electrical Sorting Of Particles Based On Shape In A Spiral Microchannel, John Dubose, Xinyu Lu, Saurin Patel, Shizhi Qian, Sang Woo Joo

Mechanical & Aerospace Engineering Faculty Publications

Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any …


An Unexpected Particle Oscillation For Electrophoresis In Viscoelastic Fluids Through A Microchannel Constriction, Xinyu Lu, Saurin Patel, Meng Zhang, Sang Woo Joo, Shizhi Qian, Amod Ogale, Xiangchun Xuan 2014 Old Dominion University

An Unexpected Particle Oscillation For Electrophoresis In Viscoelastic Fluids Through A Microchannel Constriction, Xinyu Lu, Saurin Patel, Meng Zhang, Sang Woo Joo, Shizhi Qian, Amod Ogale, Xiangchun Xuan

Mechanical & Aerospace Engineering Faculty Publications

Electrophoresis plays an important role in many applications, which, however, has so far been extensively studied in Newtonian fluids only. This work presents the first experimental investigation of particle electrophoresis in viscoelastic polyethylene oxide (PEO) solutions through a microchannel constriction under pure DC electric fields. An oscillatory particle motion is observed in the constriction region, which is distinctly different from the particle behavior in a polymer-free Newtonian fluid. This stream-wise particle oscillation continues until a sufficient number of particles form a chain to pass through the constriction completely. It is speculated that such an unexpected particle oscillating phenomenon is a …


Numerical Study Of Lipid Translocation Driven By Nanoporation Due To Multiple High-Intensity, Ultrashort Electrical Pulses, Viswanadham Sridhara, Ravindra P. Joshi 2014 Old Dominion University

Numerical Study Of Lipid Translocation Driven By Nanoporation Due To Multiple High-Intensity, Ultrashort Electrical Pulses, Viswanadham Sridhara, Ravindra P. Joshi

Electrical & Computer Engineering Faculty Publications

The dynamical translocation of lipids from one leaflet to another due to membrane permeabilization driven by nanosecond, high-intensity (>100 kV/cm) electrical pulses has been probed. Our simulations show that lipid molecules can translocate by diffusion through water-filled nanopores which form following high voltage application. Our focus is on multiple pulsing, and such simulations are relevant to gauge the time duration over which nanopores might remain open, and facilitate continued lipid translocations and membrane transport. Our results are indicative of a N1/2 scaling with pulse number for the pore radius. These results bode well for the use of pulse …


Digital Commons powered by bepress